Cargando…
Active learning for accuracy enhancement of semantic segmentation with CNN-corrected label curations: Evaluation on kidney segmentation in abdominal CT
Segmentation is fundamental to medical image analysis. Recent advances in fully convolutional networks has enabled automatic segmentation; however, high labeling efforts and difficulty in acquiring sufficient and high-quality training data is still a challenge. In this study, a cascaded 3D U-Net wit...
Autores principales: | Kim, Taehun, Lee, Kyung Hwa, Ham, Sungwon, Park, Beomhee, Lee, Sangwook, Hong, Dayeong, Kim, Guk Bae, Kyung, Yoon Soo, Kim, Choung-Soo, Kim, Namkug |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962335/ https://www.ncbi.nlm.nih.gov/pubmed/31941938 http://dx.doi.org/10.1038/s41598-019-57242-9 |
Ejemplares similares
-
Author Correction: Active learning for accuracy enhancement of semantic segmentation with CNN-corrected label curations: Evaluation on kidney segmentation in abdominal CT
por: Kim, Taehun, et al.
Publicado: (2022) -
Improvement of semantic segmentation through transfer learning of multi-class regions with convolutional neural networks on supine and prone breast MRI images
por: Ham, Sungwon, et al.
Publicado: (2023) -
Fully automated condyle segmentation using 3D convolutional neural networks
por: Jha, Nayansi, et al.
Publicado: (2022) -
Utilizing patient-specific 3D printed kidney surgical guide with realistic phantom for partial nephrectomy
por: Ock, Junhyeok, et al.
Publicado: (2023) -
Breast tumor movements analysis using MRI scans in prone and supine positions
por: Wang, Chuan-Bing, et al.
Publicado: (2020)