Cargando…

Mangosteen pericarp components alleviate progression of prostatic hyperplasia and mitochondrial dysfunction in rats

Prostatic hyperplasia, characterized by progressive hyperplasia of glandular and stromal tissues, is the most common proliferative abnormality of the prostate in aging men. A high-fat diet (HFD) usually is a major factor inducing oxidative stress, inflammation, and an abnormal state of the prostate....

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Hui-Hsuan, Chen, Chia-Wen, Yu, Pei-Ling, Lin, Yu-Ling, Hsieh, Rong-Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962454/
https://www.ncbi.nlm.nih.gov/pubmed/31941927
http://dx.doi.org/10.1038/s41598-019-56970-2
Descripción
Sumario:Prostatic hyperplasia, characterized by progressive hyperplasia of glandular and stromal tissues, is the most common proliferative abnormality of the prostate in aging men. A high-fat diet (HFD) usually is a major factor inducing oxidative stress, inflammation, and an abnormal state of the prostate. Mangosteen pericarp powder (MPP) has abundant xanthones which can be antioxidant, anti-inflammatory, and antiproliferative agents. Therefore, the purpose of this study was to research whether MPP supplementation can affect the progression of prostatic hyperplasia. Twenty-four male F344 rats were randomly divided into four groups, including a control group (C), prostatic hyperplasia-induced group (P), prostatic hyperplasia-induced with low-dose MPP group (PL), and induced with high-dose MPP group (PH). The P, PL, and PH groups were given weekly intraperitoneal injections of 3,2′-dimethyl-4-aminobiphenyl (DMAB) at 25 mg/kg body weight for 10 weeks, and simultaneously fed an HFD for 24 weeks. Our findings first demonstrated that MPP consumption significantly decreased the prostate weight, serum testosterone and dihydrotestosterone concentrations, protein expression of proliferating cell nuclear antigen, and malondialdehyde levels and ameliorated mitochondrial function in prostatic tissues. These results suggest that MPP supplementation could be used to attenuate the progression of prostatic hyperplasia.