Cargando…
Simultaneous piezoelectric noninvasive detection of multiple vital signs
The monitoring of vital signs plays a key role in the diagnosis of several diseases. Piezoelectric sensors have been utilized to collect a corresponding representative signal from the chest surface. The subject typically needs to hold his or her breath to eliminate the respiration effect. This work...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962459/ https://www.ncbi.nlm.nih.gov/pubmed/31942021 http://dx.doi.org/10.1038/s41598-019-57326-6 |
Sumario: | The monitoring of vital signs plays a key role in the diagnosis of several diseases. Piezoelectric sensors have been utilized to collect a corresponding representative signal from the chest surface. The subject typically needs to hold his or her breath to eliminate the respiration effect. This work further contributes to the extraction of the corresponding representative vital signs directly from the measured respiration signal. The contraction and expansion of the heart muscles, as well as the respiration activities, will induce a mechanical vibration across the chest wall. The induced vibration is then captured by the piezoelectric sensor placed at the chest surface, which produces an electrical output voltage signal conformally mapped with the respiration-cardiac activities. During breathing, the measured voltage signal is composed of the cardiac cycle activities modulated along with the respiratory cycle activity. A representative model that incorporates the cardiac and respiratory activities is developed and adopted. The piezoelectric and the convolution theories along with Fourier transformation are applied to extract the corresponding cardiac activity signal from the respiration signal. All the results were validated step by step by a conventional apparatus, with good agreement observed. |
---|