Cargando…

Enhancing the Efficacy of Stem Cell Therapy with Glycosaminoglycans

Human mesenchymal stem cell (hMSC) therapy offers significant potential for osteochondral regeneration. Such applications require their ex vivo expansion in media frequently supplemented with fibroblast growth factor 2 (FGF2). Particular heparan sulfate (HS) fractions stabilize FGF2-FGF receptor com...

Descripción completa

Detalles Bibliográficos
Autores principales: Ling, Ling, Ren, Xiafei, Cao, Xue, Hassan, Afizah Binte Mohd, Mah, Sophia, Sathiyanathan, Padmapriya, Smith, Raymond A.A., Tan, Clarissa L.L., Eio, Michelle, Samsonraj, Rebekah M., van Wijnen, Andre J., Raghunath, Michael, Nurcombe, Victor, Hui, James H., Cool, Simon M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6962655/
https://www.ncbi.nlm.nih.gov/pubmed/31902704
http://dx.doi.org/10.1016/j.stemcr.2019.12.003
Descripción
Sumario:Human mesenchymal stem cell (hMSC) therapy offers significant potential for osteochondral regeneration. Such applications require their ex vivo expansion in media frequently supplemented with fibroblast growth factor 2 (FGF2). Particular heparan sulfate (HS) fractions stabilize FGF2-FGF receptor complexes. We show that an FGF2-binding HS variant (HS8) accelerates the expansion of freshly isolated bone marrow hMSCs without compromising their naivety. Importantly, the repair of osteochondral defects in both rats and pigs is improved after treatment with HS8-supplemented hMSCs (MSC(HS8)), when assessed histologically, biomechanically, or by MRI. Thus, supplementing hMSC culture media with an HS variant that targets endogenously produced FGF2 allows the elimination of exogenous growth factors that may adversely affect their therapeutic potency.