Cargando…
An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design
Highly attenuated poxviral vectors, such as modified vaccinia virus ankara (MVA), are promising vaccine candidates against several infectious diseases. One of the approaches developed to enhance the immunogenicity of poxvirus vectors is increasing the promoter strength and accelerating during infect...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963416/ https://www.ncbi.nlm.nih.gov/pubmed/31817622 http://dx.doi.org/10.3390/vaccines7040208 |
_version_ | 1783488273804427264 |
---|---|
author | Pérez, Patricia Marín, María Q. Lázaro-Frías, Adrián Sorzano, Carlos Óscar S. Di Pilato, Mauro Gómez, Carmen E. Esteban, Mariano García-Arriaza, Juan |
author_facet | Pérez, Patricia Marín, María Q. Lázaro-Frías, Adrián Sorzano, Carlos Óscar S. Di Pilato, Mauro Gómez, Carmen E. Esteban, Mariano García-Arriaza, Juan |
author_sort | Pérez, Patricia |
collection | PubMed |
description | Highly attenuated poxviral vectors, such as modified vaccinia virus ankara (MVA), are promising vaccine candidates against several infectious diseases. One of the approaches developed to enhance the immunogenicity of poxvirus vectors is increasing the promoter strength and accelerating during infection production levels of heterologous antigens. Here, we have generated and characterized the biology and immunogenicity of an optimized MVA-based vaccine candidate against HIV/AIDS expressing HIV-1 clade B gp120 protein under the control of a novel synthetic late/early optimized (LEO) promoter (LEO160 promoter; with a spacer length of 160 nucleotides), termed MVA-LEO160-gp120. In infected cells, MVA-LEO160-gp120 significantly increased the expression levels of HIV-1 gp120 mRNA and protein, compared to the clinical vaccine MVA-B vector expressing HIV-1 gp120 under the control of the commonly used synthetic early/late promoter. When mice were immunized with a heterologous DNA-prime/MVA-boost protocol, the immunization group DNA-gp120/MVA-LEO160-gp120 induced an enhancement in the magnitude of gp120-specific CD4(+) and CD8(+) T-cell responses, compared to DNA-gp120/MVA-B; with most of the responses being mediated by the CD8(+) T-cell compartment, with a T effector memory phenotype. DNA-gp120/MVA-LEO160-gp120 also elicited a trend to a higher magnitude of gp120-specific CD4(+) T follicular helper cells, and modest enhanced levels of antibodies against HIV-1 gp120. These findings revealed that this new optimized vaccinia virus promoter could be considered a promising strategy in HIV/AIDS vaccine design, confirming the importance of early expression of heterologous antigen and its impact on the antigen-specific immunogenicity elicited by poxvirus-based vectors. |
format | Online Article Text |
id | pubmed-6963416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-69634162020-02-26 An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design Pérez, Patricia Marín, María Q. Lázaro-Frías, Adrián Sorzano, Carlos Óscar S. Di Pilato, Mauro Gómez, Carmen E. Esteban, Mariano García-Arriaza, Juan Vaccines (Basel) Article Highly attenuated poxviral vectors, such as modified vaccinia virus ankara (MVA), are promising vaccine candidates against several infectious diseases. One of the approaches developed to enhance the immunogenicity of poxvirus vectors is increasing the promoter strength and accelerating during infection production levels of heterologous antigens. Here, we have generated and characterized the biology and immunogenicity of an optimized MVA-based vaccine candidate against HIV/AIDS expressing HIV-1 clade B gp120 protein under the control of a novel synthetic late/early optimized (LEO) promoter (LEO160 promoter; with a spacer length of 160 nucleotides), termed MVA-LEO160-gp120. In infected cells, MVA-LEO160-gp120 significantly increased the expression levels of HIV-1 gp120 mRNA and protein, compared to the clinical vaccine MVA-B vector expressing HIV-1 gp120 under the control of the commonly used synthetic early/late promoter. When mice were immunized with a heterologous DNA-prime/MVA-boost protocol, the immunization group DNA-gp120/MVA-LEO160-gp120 induced an enhancement in the magnitude of gp120-specific CD4(+) and CD8(+) T-cell responses, compared to DNA-gp120/MVA-B; with most of the responses being mediated by the CD8(+) T-cell compartment, with a T effector memory phenotype. DNA-gp120/MVA-LEO160-gp120 also elicited a trend to a higher magnitude of gp120-specific CD4(+) T follicular helper cells, and modest enhanced levels of antibodies against HIV-1 gp120. These findings revealed that this new optimized vaccinia virus promoter could be considered a promising strategy in HIV/AIDS vaccine design, confirming the importance of early expression of heterologous antigen and its impact on the antigen-specific immunogenicity elicited by poxvirus-based vectors. MDPI 2019-12-06 /pmc/articles/PMC6963416/ /pubmed/31817622 http://dx.doi.org/10.3390/vaccines7040208 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pérez, Patricia Marín, María Q. Lázaro-Frías, Adrián Sorzano, Carlos Óscar S. Di Pilato, Mauro Gómez, Carmen E. Esteban, Mariano García-Arriaza, Juan An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design |
title | An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design |
title_full | An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design |
title_fullStr | An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design |
title_full_unstemmed | An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design |
title_short | An MVA Vector Expressing HIV-1 Envelope under the Control of a Potent Vaccinia Virus Promoter as a Promising Strategy in HIV/AIDS Vaccine Design |
title_sort | mva vector expressing hiv-1 envelope under the control of a potent vaccinia virus promoter as a promising strategy in hiv/aids vaccine design |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963416/ https://www.ncbi.nlm.nih.gov/pubmed/31817622 http://dx.doi.org/10.3390/vaccines7040208 |
work_keys_str_mv | AT perezpatricia anmvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT marinmariaq anmvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT lazarofriasadrian anmvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT sorzanocarlososcars anmvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT dipilatomauro anmvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT gomezcarmene anmvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT estebanmariano anmvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT garciaarriazajuan anmvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT perezpatricia mvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT marinmariaq mvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT lazarofriasadrian mvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT sorzanocarlososcars mvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT dipilatomauro mvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT gomezcarmene mvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT estebanmariano mvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign AT garciaarriazajuan mvavectorexpressinghiv1envelopeunderthecontrolofapotentvacciniaviruspromoterasapromisingstrategyinhivaidsvaccinedesign |