Cargando…

In Vitro Activity of Sertraline, an Antidepressant, Against Antibiotic-Susceptible and Antibiotic-Resistant Helicobacter pylori Strains

Antibiotic resistance of Helicobacter pylori, a spiral bacterium associated with gastric diseases, is a topic that has been intensively discussed in last decades. Recent discoveries indicate promising antimicrobial and antibiotic-potentiating properties of sertraline (SER), an antidepressant substan...

Descripción completa

Detalles Bibliográficos
Autores principales: Krzyżek, Paweł, Franiczek, Roman, Krzyżanowska, Barbara, Łaczmański, Łukasz, Migdał, Paweł, Gościniak, Grażyna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963513/
https://www.ncbi.nlm.nih.gov/pubmed/31717683
http://dx.doi.org/10.3390/pathogens8040228
Descripción
Sumario:Antibiotic resistance of Helicobacter pylori, a spiral bacterium associated with gastric diseases, is a topic that has been intensively discussed in last decades. Recent discoveries indicate promising antimicrobial and antibiotic-potentiating properties of sertraline (SER), an antidepressant substance. The aim of the study, therefore, was to determine the antibacterial activity of SER in relation to antibiotic-sensitive and antibiotic-resistant H. pylori strains. The antimicrobial tests were performed using a diffusion-disk method, microdilution method, and time-killing assay. The interaction between SER and antibiotics (amoxicillin, clarithromycin, tetracycline, and metronidazole) was determined by using a checkerboard method. In addition, the study was expanded to include observations by light, fluorescence, and scanning electron microscopy. The growth inhibition zones were in the range of 19–37 mm for discs impregnated with 2 mg of SER. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) counted for 2–8 µg/mL and 4–8 µg/mL, respectively. The time-killing assay showed the time-dependent and concentration-dependent bactericidal activity of SER. Bacteria exposed to MBCs (but not sub-MICs and MICs ≠ MBCs) underwent morphological transformation into coccoid forms. This mechanism, however, was not protective because these cells after a 24-h incubation had a several-fold reduced green/red fluorescence ratio compared to the control. Using the checkerboard assay, a synergistic/additive interaction of SER with all four antibiotics tested was demonstrated. These results indicate that SER may be a promising anti-H. pylori compound.