Cargando…
Exogenous Dopamine Application Promotes Alkali Tolerance of Apple Seedlings
Arid and semiarid apple producing areas suffer from severe alkalinity of soil, which strongly affects the yield and quality of apples. Dopamine (DA) is involved in metabolic activities in response to abiotic stress in plants. To detect the effects of exogenous DA application on the adaption of apple...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963653/ https://www.ncbi.nlm.nih.gov/pubmed/31817831 http://dx.doi.org/10.3390/plants8120580 |
Sumario: | Arid and semiarid apple producing areas suffer from severe alkalinity of soil, which strongly affects the yield and quality of apples. Dopamine (DA) is involved in metabolic activities in response to abiotic stress in plants. To detect the effects of exogenous DA application on the adaption of apple (Malus hupehensis) seedlings to alkali stress and as a protection from oxidative stress, 0.1 mM DA was identified as the most suitable concentration by hydroponic culture. Further experimentation showed that the growth and photosynthesis of apple seedlings were significantly inhibited under alkali stress, and more reactive oxygen species accumulated, compared with control. However, exogenous DA application suppressed the loss of the plant height, root length, chlorophyll levels, and photosynthetic capacity of apple seedlings that were caused by alkali stress. In the leaves of alkali stressed seedlings, the catalase, superoxide dismutase, and peroxidase activities were lower and hydrogen peroxide and malondialdehyde levels were higher than in the untreated plants. The presence of DA significantly alleviated such effects of alkali stress. In addition, exogenous DA application increased the antioxidant capacity of apple seedlings under alkali stress by increasing the level of chlorogenic acid. These results are significant for improving the alkali tolerance of apple in apple-producing areas with alkalized soil. |
---|