Cargando…
Detection of Lower Albuminuria Levels and Early Development of Diabetic Kidney Disease Using an Artificial Intelligence-Based Rule Extraction Approach
The aim of the present study was to determine the lowest cut-off value for albuminuria levels, which can be used to detect diabetic kidney disease (DKD) using the urinary albumin-to-creatinine ratio (UACR). National Health and Nutrition Examination Survey (NHANES) data for US adults were used, and p...
Autor principal: | Hayashi, Yoichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963949/ https://www.ncbi.nlm.nih.gov/pubmed/31569548 http://dx.doi.org/10.3390/diagnostics9040133 |
Ejemplares similares
-
Use of an artificial intelligence‐based rule extraction approach to predict an emergency cesarean section
por: Nagayasu, Yoko, et al.
Publicado: (2021) -
Non-invasive prediction of non-alcoholic steatohepatitis in Japanese patients with morbid obesity by artificial intelligence using rule extraction technology
por: Uehara, Daisuke, et al.
Publicado: (2018) -
The association between methylation levels of targeted genes and albuminuria in patients with early diabetic kidney disease
por: Aldemir, Ozgur, et al.
Publicado: (2017) -
Diabetes, Albuminuria and the Kidney—Brain Axis
por: Ariton, Diana Maria, et al.
Publicado: (2021) -
Albuminuria Is Associated with Left Ventricular Hypertrophy in Patients with Early Diabetic Kidney Disease
por: Wu, Nan, et al.
Publicado: (2014)