Cargando…
The Performance of Deep Learning Algorithms on Automatic Pulmonary Nodule Detection and Classification Tested on Different Datasets That Are Not Derived from LIDC-IDRI: A Systematic Review
The aim of this study was to systematically review the performance of deep learning technology in detecting and classifying pulmonary nodules on computed tomography (CT) scans that were not from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) database. Furthermo...
Autores principales: | Li, Dana, Mikela Vilmun, Bolette, Frederik Carlsen, Jonathan, Albrecht-Beste, Elisabeth, Ammitzbøl Lauridsen, Carsten, Bachmann Nielsen, Michael, Lindskov Hansen, Kristoffer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6963966/ https://www.ncbi.nlm.nih.gov/pubmed/31795409 http://dx.doi.org/10.3390/diagnostics9040207 |
Ejemplares similares
-
Automatic Pulmonary Nodule Detection Applying Deep Learning or Machine Learning Algorithms to the LIDC-IDRI Database: A Systematic Review
por: Pehrson, Lea Marie, et al.
Publicado: (2019) -
Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database
por: Jacobs, Colin, et al.
Publicado: (2015) -
Performance and Agreement When Annotating Chest X-ray Text Reports—A Preliminary Step in the Development of a Deep Learning-Based Prioritization and Detection System
por: Li, Dana, et al.
Publicado: (2023) -
DICOM re‐encoding of volumetrically annotated Lung Imaging Database Consortium (LIDC) nodules
por: Fedorov, Andrey, et al.
Publicado: (2020) -
Type-driven development with Idris
por: Brady, Edwin
Publicado: (2017)