Cargando…
A benchmark of batch-effect correction methods for single-cell RNA sequencing data
BACKGROUND: Large-scale single-cell transcriptomic datasets generated using different technologies contain batch-specific systematic variations that present a challenge to batch-effect removal and data integration. With continued growth expected in scRNA-seq data, achieving effective batch integrati...
Autores principales: | Tran, Hoa Thi Nhu, Ang, Kok Siong, Chevrier, Marion, Zhang, Xiaomeng, Lee, Nicole Yee Shin, Goh, Michelle, Chen, Jinmiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6964114/ https://www.ncbi.nlm.nih.gov/pubmed/31948481 http://dx.doi.org/10.1186/s13059-019-1850-9 |
Ejemplares similares
-
Establishing a human bone marrow single cell reference atlas to study ageing and diseases
por: Lee, Nicole Yee Shin, et al.
Publicado: (2023) -
DISCO: a database of Deeply Integrated human Single-Cell Omics data
por: Li, Mengwei, et al.
Publicado: (2021) -
Publisher Correction: BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment
por: Boel, Annekatrien, et al.
Publicado: (2018) -
Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench
por: Chazarra-Gil, Ruben, et al.
Publicado: (2021) -
Perspectives for better batch effect correction in mass-spectrometry-based proteomics
por: Phua, Ser-Xian, et al.
Publicado: (2022)