Cargando…
Impact of image preprocessing methods on reproducibility of radiomic features in multimodal magnetic resonance imaging in glioblastoma
To investigate the effect of image preprocessing, in respect to intensity inhomogeneity correction and noise filtering, on the robustness and reproducibility of the radiomics features extracted from the Glioblastoma (GBM) tumor in multimodal MR images (mMRI). In this study, for each patient 1461 rad...
Autores principales: | Moradmand, Hajar, Aghamiri, Seyed Mahmoud Reza, Ghaderi, Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6964771/ https://www.ncbi.nlm.nih.gov/pubmed/31880401 http://dx.doi.org/10.1002/acm2.12795 |
Ejemplares similares
-
The role of deep learning‐based survival model in improving survival prediction of patients with glioblastoma
por: Moradmand, Hajar, et al.
Publicado: (2021) -
Unsupervised deep learning registration model for multimodal brain images
por: Abbasi, Samaneh, et al.
Publicado: (2023) -
Improving reproducibility and performance of radiomics in low‐dose CT using cycle GANs
por: Chen, Junhua, et al.
Publicado: (2022) -
Radiomics with 3-dimensional magnetic resonance fingerprinting: influence of dictionary design on repeatability and reproducibility of radiomic features
por: Fujita, Shohei, et al.
Publicado: (2022) -
Hepatic vessels segmentation using deep learning and preprocessing enhancement
por: Alirr, Omar Ibrahim, et al.
Publicado: (2023)