Cargando…
Early Prediction of Sepsis From Clinical Data: The PhysioNet/Computing in Cardiology Challenge 2019
Sepsis is a major public health concern with significant morbidity, mortality, and healthcare expenses. Early detection and antibiotic treatment of sepsis improve outcomes. However, although professional critical care societies have proposed new clinical criteria that aid sepsis recognition, the fun...
Autores principales: | Reyna, Matthew A., Josef, Christopher S., Jeter, Russell, Shashikumar, Supreeth P., Westover, M. Brandon, Nemati, Shamim, Clifford, Gari D., Sharma, Ashish |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6964870/ https://www.ncbi.nlm.nih.gov/pubmed/31939789 http://dx.doi.org/10.1097/CCM.0000000000004145 |
Ejemplares similares
-
Heart murmur detection from phonocardiogram recordings: The George B. Moody PhysioNet Challenge 2022
por: Reyna, Matthew A., et al.
Publicado: (2023) -
An Open-source Toolbox for Analysing and Processing PhysioNet Databases in MATLAB and Octave
por: Silva, Ikaro, et al.
Publicado: (2014) -
Practical Lessons on 12-Lead ECG Classification: Meta-Analysis of Methods From PhysioNet/Computing in Cardiology Challenge 2020
por: Hong, Shenda, et al.
Publicado: (2022) -
Artificial intelligence sepsis prediction algorithm learns to say “I don’t know”
por: Shashikumar, Supreeth P., et al.
Publicado: (2021) -
Comparability of Heart Rate Turbulence Methodology: 15 Intervals Suffice to Calculate Turbulence Slope – A Methodological Analysis Using PhysioNet Data of 1074 Patients
por: Blesius, Valeria, et al.
Publicado: (2022)