Cargando…
Using machine learning to generate high-resolution wet area maps for planning forest management: A study in a boreal forest landscape
Comparisons between field data and available maps show that 64% of wet areas in the boreal landscape are missing on current maps. Primarily forested wetlands and wet soils near streams and lakes are missing, making them difficult to manage. One solution is to model missing wet areas from high-resolu...
Autores principales: | Lidberg, William, Nilsson, Mats, Ågren, Anneli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965074/ https://www.ncbi.nlm.nih.gov/pubmed/31073983 http://dx.doi.org/10.1007/s13280-019-01196-9 |
Ejemplares similares
-
Landscape‐variability of the carbon balance across managed boreal forests
por: Peichl, Matthias, et al.
Publicado: (2022) -
Identifying and assessing the potential hydrological function of past artificial forest drainage
por: Hasselquist, Eliza Maher, et al.
Publicado: (2017) -
Restoration of boreal and temperate forests /
Publicado: (2004) -
Effects of harvesting on spatial and temporal diversity of carbon stocks in a boreal forest landscape
por: Ter-Mikaelian, Michael T, et al.
Publicado: (2013) -
Influences of landscape change and winter severity on invasive ungulate persistence in the Nearctic boreal forest
por: Fisher, Jason T., et al.
Publicado: (2020)