Cargando…
Electronics without bridging components
We propose a new paradigm of electronic devices based only on two electrodes separated by a gap, i.e. without any functional element bridging them. We use a tight-binding model to show that, depending on the type of material of the electrodes and its structure, several electronic functionalities can...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965080/ https://www.ncbi.nlm.nih.gov/pubmed/31949171 http://dx.doi.org/10.1038/s41598-019-56717-z |
Sumario: | We propose a new paradigm of electronic devices based only on two electrodes separated by a gap, i.e. without any functional element bridging them. We use a tight-binding model to show that, depending on the type of material of the electrodes and its structure, several electronic functionalities can be achieved: ohmic behaviour, rectification, negative differential resistance, spin-filtering and magnetoresistance. In particular, we show that it is possible to deliver a given functionality by changing the coupling between the surface and bulk states and between the surface states across the gap, which dramatically changes the current-voltage characteristics. These results prove that it is possible to have functional electronic and spintronic elements on the nanoscale without having physical components bridging the electrodes. |
---|