Cargando…

Revealing Relationships Among Cognitive Functions Using Functional Connectivity and a Large-Scale Meta-Analysis Database

To characterize each cognitive function per se and to understand the brain as an aggregate of those functions, it is vital to relate dozens of these functions to each other. Knowledge about the relationships among cognitive functions is informative not only for basic neuroscientific research but als...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurashige, Hiroki, Kaneko, Jun, Yamashita, Yuichi, Osu, Rieko, Otaka, Yohei, Hanakawa, Takashi, Honda, Manabu, Kawabata, Hideaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965330/
https://www.ncbi.nlm.nih.gov/pubmed/31998102
http://dx.doi.org/10.3389/fnhum.2019.00457
_version_ 1783488618903371776
author Kurashige, Hiroki
Kaneko, Jun
Yamashita, Yuichi
Osu, Rieko
Otaka, Yohei
Hanakawa, Takashi
Honda, Manabu
Kawabata, Hideaki
author_facet Kurashige, Hiroki
Kaneko, Jun
Yamashita, Yuichi
Osu, Rieko
Otaka, Yohei
Hanakawa, Takashi
Honda, Manabu
Kawabata, Hideaki
author_sort Kurashige, Hiroki
collection PubMed
description To characterize each cognitive function per se and to understand the brain as an aggregate of those functions, it is vital to relate dozens of these functions to each other. Knowledge about the relationships among cognitive functions is informative not only for basic neuroscientific research but also for clinical applications and developments of brain-inspired artificial intelligence. In the present study, we propose an exhaustive data mining approach to reveal relationships among cognitive functions based on functional brain mapping and network analysis. We began our analysis with 109 pseudo-activation maps (cognitive function maps; CFM) that were reconstructed from a functional magnetic resonance imaging meta-analysis database, each of which corresponds to one of 109 cognitive functions such as ‘emotion,’ ‘attention,’ ‘episodic memory,’ etc. Based on the resting-state functional connectivity between the CFMs, we mapped the cognitive functions onto a two-dimensional space where the relevant functions were located close to each other, which provided a rough picture of the brain as an aggregate of cognitive functions. Then, we conducted so-called conceptual analysis of cognitive functions using clustering of voxels in each CFM connected to the other 108 CFMs with various strengths. As a result, a CFM for each cognitive function was subdivided into several parts, each of which is strongly associated with some CFMs for a subset of the other cognitive functions, which brought in sub-concepts (i.e., sub-functions) of the cognitive function. Moreover, we conducted network analysis for the network whose nodes were parcels derived from whole-brain parcellation based on the whole-brain voxel-to-CFM resting-state functional connectivities. Since each parcel is characterized by associations with the 109 cognitive functions, network analyses using them are expected to inform about relationships between cognitive and network characteristics. Indeed, we found that informational diversities of interaction between parcels and densities of local connectivity were dependent on the kinds of associated functions. In addition, we identified the homogeneous and inhomogeneous network communities about the associated functions. Altogether, we suggested the effectiveness of our approach in which we fused the large-scale meta-analysis of functional brain mapping with the methods of network neuroscience to investigate the relationships among cognitive functions.
format Online
Article
Text
id pubmed-6965330
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-69653302020-01-29 Revealing Relationships Among Cognitive Functions Using Functional Connectivity and a Large-Scale Meta-Analysis Database Kurashige, Hiroki Kaneko, Jun Yamashita, Yuichi Osu, Rieko Otaka, Yohei Hanakawa, Takashi Honda, Manabu Kawabata, Hideaki Front Hum Neurosci Neuroscience To characterize each cognitive function per se and to understand the brain as an aggregate of those functions, it is vital to relate dozens of these functions to each other. Knowledge about the relationships among cognitive functions is informative not only for basic neuroscientific research but also for clinical applications and developments of brain-inspired artificial intelligence. In the present study, we propose an exhaustive data mining approach to reveal relationships among cognitive functions based on functional brain mapping and network analysis. We began our analysis with 109 pseudo-activation maps (cognitive function maps; CFM) that were reconstructed from a functional magnetic resonance imaging meta-analysis database, each of which corresponds to one of 109 cognitive functions such as ‘emotion,’ ‘attention,’ ‘episodic memory,’ etc. Based on the resting-state functional connectivity between the CFMs, we mapped the cognitive functions onto a two-dimensional space where the relevant functions were located close to each other, which provided a rough picture of the brain as an aggregate of cognitive functions. Then, we conducted so-called conceptual analysis of cognitive functions using clustering of voxels in each CFM connected to the other 108 CFMs with various strengths. As a result, a CFM for each cognitive function was subdivided into several parts, each of which is strongly associated with some CFMs for a subset of the other cognitive functions, which brought in sub-concepts (i.e., sub-functions) of the cognitive function. Moreover, we conducted network analysis for the network whose nodes were parcels derived from whole-brain parcellation based on the whole-brain voxel-to-CFM resting-state functional connectivities. Since each parcel is characterized by associations with the 109 cognitive functions, network analyses using them are expected to inform about relationships between cognitive and network characteristics. Indeed, we found that informational diversities of interaction between parcels and densities of local connectivity were dependent on the kinds of associated functions. In addition, we identified the homogeneous and inhomogeneous network communities about the associated functions. Altogether, we suggested the effectiveness of our approach in which we fused the large-scale meta-analysis of functional brain mapping with the methods of network neuroscience to investigate the relationships among cognitive functions. Frontiers Media S.A. 2020-01-10 /pmc/articles/PMC6965330/ /pubmed/31998102 http://dx.doi.org/10.3389/fnhum.2019.00457 Text en Copyright © 2020 Kurashige, Kaneko, Yamashita, Osu, Otaka, Hanakawa, Honda and Kawabata. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Kurashige, Hiroki
Kaneko, Jun
Yamashita, Yuichi
Osu, Rieko
Otaka, Yohei
Hanakawa, Takashi
Honda, Manabu
Kawabata, Hideaki
Revealing Relationships Among Cognitive Functions Using Functional Connectivity and a Large-Scale Meta-Analysis Database
title Revealing Relationships Among Cognitive Functions Using Functional Connectivity and a Large-Scale Meta-Analysis Database
title_full Revealing Relationships Among Cognitive Functions Using Functional Connectivity and a Large-Scale Meta-Analysis Database
title_fullStr Revealing Relationships Among Cognitive Functions Using Functional Connectivity and a Large-Scale Meta-Analysis Database
title_full_unstemmed Revealing Relationships Among Cognitive Functions Using Functional Connectivity and a Large-Scale Meta-Analysis Database
title_short Revealing Relationships Among Cognitive Functions Using Functional Connectivity and a Large-Scale Meta-Analysis Database
title_sort revealing relationships among cognitive functions using functional connectivity and a large-scale meta-analysis database
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965330/
https://www.ncbi.nlm.nih.gov/pubmed/31998102
http://dx.doi.org/10.3389/fnhum.2019.00457
work_keys_str_mv AT kurashigehiroki revealingrelationshipsamongcognitivefunctionsusingfunctionalconnectivityandalargescalemetaanalysisdatabase
AT kanekojun revealingrelationshipsamongcognitivefunctionsusingfunctionalconnectivityandalargescalemetaanalysisdatabase
AT yamashitayuichi revealingrelationshipsamongcognitivefunctionsusingfunctionalconnectivityandalargescalemetaanalysisdatabase
AT osurieko revealingrelationshipsamongcognitivefunctionsusingfunctionalconnectivityandalargescalemetaanalysisdatabase
AT otakayohei revealingrelationshipsamongcognitivefunctionsusingfunctionalconnectivityandalargescalemetaanalysisdatabase
AT hanakawatakashi revealingrelationshipsamongcognitivefunctionsusingfunctionalconnectivityandalargescalemetaanalysisdatabase
AT hondamanabu revealingrelationshipsamongcognitivefunctionsusingfunctionalconnectivityandalargescalemetaanalysisdatabase
AT kawabatahideaki revealingrelationshipsamongcognitivefunctionsusingfunctionalconnectivityandalargescalemetaanalysisdatabase