Cargando…
Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells
The two-dimensional (2D) Ruddlesden−Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic ba...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965620/ https://www.ncbi.nlm.nih.gov/pubmed/31949152 http://dx.doi.org/10.1038/s41467-019-14073-6 |
_version_ | 1783488652841582592 |
---|---|
author | Liu, Xiaojie Chanana, Ashish Huynh, Uyen Xue, Fei Haney, Paul Blair, Steve Jiang, Xiaomei Vardeny, Z. V. |
author_facet | Liu, Xiaojie Chanana, Ashish Huynh, Uyen Xue, Fei Haney, Paul Blair, Steve Jiang, Xiaomei Vardeny, Z. V. |
author_sort | Liu, Xiaojie |
collection | PubMed |
description | The two-dimensional (2D) Ruddlesden−Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic band structure. Upon breaking the inversion symmetry, a spin splitting (‘Rashba splitting’) occurs in the electronic bands. We have studied the spin splitting in 2D-PEPI single crystals using the circular photogalvanic effect (CPGE). We confirm the existence of Rashba splitting at the electronic band extrema of 35±10 meV, and identify the main inversion symmetry breaking direction perpendicular to the MQW planes. The CPGE action spectrum above the bandgap reveals spin-polarized photocurrent generated by ultrafast relaxation of excited photocarriers separated in momentum space. Whereas the helicity dependent photocurrent with below-gap excitation is due to spin-galvanic effect of the ionized spin-polarized excitons, where spin polarization occurs in the spin-split bands due to asymmetric spin-flip. |
format | Online Article Text |
id | pubmed-6965620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-69656202020-01-22 Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells Liu, Xiaojie Chanana, Ashish Huynh, Uyen Xue, Fei Haney, Paul Blair, Steve Jiang, Xiaomei Vardeny, Z. V. Nat Commun Article The two-dimensional (2D) Ruddlesden−Popper organic-inorganic halide perovskites such as (2D)-phenethylammonium lead iodide (2D-PEPI) have layered structure that resembles multiple quantum wells (MQW). The heavy atoms in 2D-PEPI contribute a large spin-orbit coupling that influences the electronic band structure. Upon breaking the inversion symmetry, a spin splitting (‘Rashba splitting’) occurs in the electronic bands. We have studied the spin splitting in 2D-PEPI single crystals using the circular photogalvanic effect (CPGE). We confirm the existence of Rashba splitting at the electronic band extrema of 35±10 meV, and identify the main inversion symmetry breaking direction perpendicular to the MQW planes. The CPGE action spectrum above the bandgap reveals spin-polarized photocurrent generated by ultrafast relaxation of excited photocarriers separated in momentum space. Whereas the helicity dependent photocurrent with below-gap excitation is due to spin-galvanic effect of the ionized spin-polarized excitons, where spin polarization occurs in the spin-split bands due to asymmetric spin-flip. Nature Publishing Group UK 2020-01-16 /pmc/articles/PMC6965620/ /pubmed/31949152 http://dx.doi.org/10.1038/s41467-019-14073-6 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Liu, Xiaojie Chanana, Ashish Huynh, Uyen Xue, Fei Haney, Paul Blair, Steve Jiang, Xiaomei Vardeny, Z. V. Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells |
title | Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells |
title_full | Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells |
title_fullStr | Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells |
title_full_unstemmed | Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells |
title_short | Circular photogalvanic spectroscopy of Rashba splitting in 2D hybrid organic–inorganic perovskite multiple quantum wells |
title_sort | circular photogalvanic spectroscopy of rashba splitting in 2d hybrid organic–inorganic perovskite multiple quantum wells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965620/ https://www.ncbi.nlm.nih.gov/pubmed/31949152 http://dx.doi.org/10.1038/s41467-019-14073-6 |
work_keys_str_mv | AT liuxiaojie circularphotogalvanicspectroscopyofrashbasplittingin2dhybridorganicinorganicperovskitemultiplequantumwells AT chananaashish circularphotogalvanicspectroscopyofrashbasplittingin2dhybridorganicinorganicperovskitemultiplequantumwells AT huynhuyen circularphotogalvanicspectroscopyofrashbasplittingin2dhybridorganicinorganicperovskitemultiplequantumwells AT xuefei circularphotogalvanicspectroscopyofrashbasplittingin2dhybridorganicinorganicperovskitemultiplequantumwells AT haneypaul circularphotogalvanicspectroscopyofrashbasplittingin2dhybridorganicinorganicperovskitemultiplequantumwells AT blairsteve circularphotogalvanicspectroscopyofrashbasplittingin2dhybridorganicinorganicperovskitemultiplequantumwells AT jiangxiaomei circularphotogalvanicspectroscopyofrashbasplittingin2dhybridorganicinorganicperovskitemultiplequantumwells AT vardenyzv circularphotogalvanicspectroscopyofrashbasplittingin2dhybridorganicinorganicperovskitemultiplequantumwells |