Cargando…
Unsupervised Cerebrovascular Segmentation of TOF-MRA Images Based on Deep Neural Network and Hidden Markov Random Field Model
Automated cerebrovascular segmentation of time-of-flight magnetic resonance angiography (TOF-MRA) images is an important technique, which can be used to diagnose abnormalities in the cerebrovascular system, such as vascular stenosis and malformation. Automated cerebrovascular segmentation can direct...
Autores principales: | Fan, Shengyu, Bian, Yueyan, Chen, Hao, Kang, Yan, Yang, Qi, Tan, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6965699/ https://www.ncbi.nlm.nih.gov/pubmed/31998107 http://dx.doi.org/10.3389/fninf.2019.00077 |
Ejemplares similares
-
Segmentation of Cerebrovascular Anatomy from TOF-MRA Using Length-Strained Enhancement and Random Walker
por: Xiao, Ruoxiu, et al.
Publicado: (2020) -
Effectiveness of MRA on embolized intracranial aneurysms: a comparison of DSA, CE-MRA, and TOF-MRA
por: Qassim, Ally Mohamed, et al.
Publicado: (2019) -
Characterising Eye Movement Events with an Unsupervised Hidden Markov Model
por: Lüken, Malte, et al.
Publicado: (2022) -
Dissecting unsupervised learning through hidden Markov modeling in electrophysiological data
por: Masaracchia, Laura, et al.
Publicado: (2023) -
Hidden Markov Model based stride segmentation on unsupervised free-living gait data in Parkinson’s disease patients
por: Roth, Nils, et al.
Publicado: (2021)