Cargando…

Mechanisms underlying the attenuation of chronic inflammatory diseases by aged garlic extract: Involvement of the activation of AMP-activated protein kinase

AMP-activated protein kinase (AMPK) is an ubiquitously expressed serine/threonine kinase and an important regulator of energy metabolism. The decreased activity of AMPK induced by low-grade chronic inflammation has been implicated in several diseases, including type 2 diabetes and atherosclerosis. H...

Descripción completa

Detalles Bibliográficos
Autores principales: Miki, Satomi, Suzuki, Jun-Ichiro, Kunimura, Kayo, Morihara, Naoaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966139/
https://www.ncbi.nlm.nih.gov/pubmed/32010323
http://dx.doi.org/10.3892/etm.2019.8372
Descripción
Sumario:AMP-activated protein kinase (AMPK) is an ubiquitously expressed serine/threonine kinase and an important regulator of energy metabolism. The decreased activity of AMPK induced by low-grade chronic inflammation has been implicated in several diseases, including type 2 diabetes and atherosclerosis. However, the activation of AMPK by natural and synthetic products can ameliorate these diseases through the inhibition of inflammation. For example, aged garlic extract (AGE) has been shown to enhance the phosphorylation of Thr172 of the α-subunit of AMPK in several tissues of disease model animals. In addition, AGE has been reported to suppress the progression of atherosclerotic plaque formation in an animal model of atherosclerosis. Moreover, AGE has been found to decrease the level of plasma glycated albumin and to improve hyperglycemia in an animal model of type 2 diabetes. These inhibitory effects of AGE are induced by the suppression of the inflammatory response. In the present review, we discuss the mechanisms through which AGE activates AMPK, as well as the mechanisms through which the activation of AMPK by AGE modulates the inflammatory response in disease models.