Cargando…
Thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics
Thermal water therapies have a role in treating various inflammatory disorders dating back to ancient Greece. Several studies have demonstrated beneficial effects of thermal water inhalations for upper respiratory disorders, such as improvement of mucociliary function and reduction of inflammatory c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pacini Editore Srl
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966775/ https://www.ncbi.nlm.nih.gov/pubmed/30745596 http://dx.doi.org/10.14639/0392-100X-2250 |
_version_ | 1783488812616253440 |
---|---|
author | BUIJS, E.F.M. COVELLO, V. PIPOLO, C. SAIBENE, A.M. FELISATI, G. QUADRIO, M. |
author_facet | BUIJS, E.F.M. COVELLO, V. PIPOLO, C. SAIBENE, A.M. FELISATI, G. QUADRIO, M. |
author_sort | BUIJS, E.F.M. |
collection | PubMed |
description | Thermal water therapies have a role in treating various inflammatory disorders dating back to ancient Greece. Several studies have demonstrated beneficial effects of thermal water inhalations for upper respiratory disorders, such as improvement of mucociliary function and reduction of inflammatory cell infiltration. This experimental study describes the numerical investigation and clinical implications of thermal water droplet deposition in the nasal cavity of a single patient. To our knowledge, the numerical flow simulations described are the first investigations specifically designed for thermal water applications. To simulate nasal airflow, a patient-specific 3D computer model was created from a CT scan. The numerical approach is based on the Large Eddy Simulation (LES) technique and builds entirely upon open-source software. Deposition on mucosa was studied for two droplet sizes (5 and 10 μm diameter), corresponding to common thermal therapy applications (aerosol and vapour inhalation). The simulations consider steady inspiration at two different (low and moderate) breathing intensities. The results of this preliminary study show specific deposition patterns that favour droplet deposition in the middle meatus region to the inferior meatus, with particle size- and breathing intensity-related effects. These global data on particle deposition differ from findings related to the single-phase nasal airflow, which is more evenly distributed between the middle and inferior meatus. The potential clinical consequences of deposition data are discussed. The study furthermore provides evidence for the effectiveness of thermal aerosol and vapour inhalation therapies in reaching important areas of nasal mucosa with considerable clinical significance. |
format | Online Article Text |
id | pubmed-6966775 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Pacini Editore Srl |
record_format | MEDLINE/PubMed |
spelling | pubmed-69667752020-01-24 Thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics BUIJS, E.F.M. COVELLO, V. PIPOLO, C. SAIBENE, A.M. FELISATI, G. QUADRIO, M. Acta Otorhinolaryngol Ital Rhinology Thermal water therapies have a role in treating various inflammatory disorders dating back to ancient Greece. Several studies have demonstrated beneficial effects of thermal water inhalations for upper respiratory disorders, such as improvement of mucociliary function and reduction of inflammatory cell infiltration. This experimental study describes the numerical investigation and clinical implications of thermal water droplet deposition in the nasal cavity of a single patient. To our knowledge, the numerical flow simulations described are the first investigations specifically designed for thermal water applications. To simulate nasal airflow, a patient-specific 3D computer model was created from a CT scan. The numerical approach is based on the Large Eddy Simulation (LES) technique and builds entirely upon open-source software. Deposition on mucosa was studied for two droplet sizes (5 and 10 μm diameter), corresponding to common thermal therapy applications (aerosol and vapour inhalation). The simulations consider steady inspiration at two different (low and moderate) breathing intensities. The results of this preliminary study show specific deposition patterns that favour droplet deposition in the middle meatus region to the inferior meatus, with particle size- and breathing intensity-related effects. These global data on particle deposition differ from findings related to the single-phase nasal airflow, which is more evenly distributed between the middle and inferior meatus. The potential clinical consequences of deposition data are discussed. The study furthermore provides evidence for the effectiveness of thermal aerosol and vapour inhalation therapies in reaching important areas of nasal mucosa with considerable clinical significance. Pacini Editore Srl 2019-12 2019-01-31 /pmc/articles/PMC6966775/ /pubmed/30745596 http://dx.doi.org/10.14639/0392-100X-2250 Text en Società Italiana di Otorinolaringoiatria e Chirurgia Cervico-Facciale, Rome, Italy http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Rhinology BUIJS, E.F.M. COVELLO, V. PIPOLO, C. SAIBENE, A.M. FELISATI, G. QUADRIO, M. Thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics |
title | Thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics |
title_full | Thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics |
title_fullStr | Thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics |
title_full_unstemmed | Thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics |
title_short | Thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics |
title_sort | thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics |
topic | Rhinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966775/ https://www.ncbi.nlm.nih.gov/pubmed/30745596 http://dx.doi.org/10.14639/0392-100X-2250 |
work_keys_str_mv | AT buijsefm thermalwaterdeliveryinthenoseexperimentalresultsdescribingdropletdepositionthroughcomputationalfluiddynamics AT covellov thermalwaterdeliveryinthenoseexperimentalresultsdescribingdropletdepositionthroughcomputationalfluiddynamics AT pipoloc thermalwaterdeliveryinthenoseexperimentalresultsdescribingdropletdepositionthroughcomputationalfluiddynamics AT saibeneam thermalwaterdeliveryinthenoseexperimentalresultsdescribingdropletdepositionthroughcomputationalfluiddynamics AT felisatig thermalwaterdeliveryinthenoseexperimentalresultsdescribingdropletdepositionthroughcomputationalfluiddynamics AT quadriom thermalwaterdeliveryinthenoseexperimentalresultsdescribingdropletdepositionthroughcomputationalfluiddynamics |