Cargando…
Evaluating probabilistic programming and fast variational Bayesian inference in phylogenetics
Recent advances in statistical machine learning techniques have led to the creation of probabilistic programming frameworks. These frameworks enable probabilistic models to be rapidly prototyped and fit to data using scalable approximation methods such as variational inference. In this work, we expl...
Autores principales: | Fourment, Mathieu, Darling, Aaron E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6966998/ https://www.ncbi.nlm.nih.gov/pubmed/31976168 http://dx.doi.org/10.7717/peerj.8272 |
Ejemplares similares
-
Fidelity of hyperbolic space for Bayesian phylogenetic inference
por: Macaulay, Matthew, et al.
Publicado: (2023) -
Local and relaxed clocks: the best of both worlds
por: Fourment, Mathieu, et al.
Publicado: (2018) -
Bayesian methods for hackers: probabilistic programming and Bayesian inference
por: Davidson-Pilon, Cameron
Publicado: (2016) -
PhyloSift: phylogenetic analysis of genomes and metagenomes
por: Darling, Aaron E., et al.
Publicado: (2014) -
Very few sites can reshape the inferred phylogenetic tree
por: Francis, Warren R., et al.
Publicado: (2020)