Cargando…
Charge and hydrophobicity are key features in sequence-trained machine learning models for predicting the biophysical properties of clinical-stage antibodies
Improved understanding of properties that mediate protein solubility and resistance to aggregation are important for developing biopharmaceuticals, and more generally in biotechnology and synthetic biology. Recent acquisition of large datasets for antibody biophysical properties enables the search f...
Autores principales: | Hebditch, Max, Warwicker, Jim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6967001/ https://www.ncbi.nlm.nih.gov/pubmed/31976163 http://dx.doi.org/10.7717/peerj.8199 |
Ejemplares similares
-
Sequence composition predicts immunoglobulin superfamily members that could share the intrinsically disordered properties of antibody CH1 domains
por: Hebditch, Max, et al.
Publicado: (2017) -
Web-based display of protein surface and pH-dependent properties for assessing the developability of biotherapeutics
por: Hebditch, Max, et al.
Publicado: (2019) -
Protein-sol pKa: prediction of electrostatic frustration, with application to coronaviruses
por: Hebditch, Max, et al.
Publicado: (2020) -
Comparison of hydrophobicity scales for predicting biophysical properties of antibodies
por: Waibl, Franz, et al.
Publicado: (2022) -
Modelling of pH-dependence to develop a strategy for stabilising mAbs at acidic steps in production
por: Hebditch, Max, et al.
Publicado: (2020)