Cargando…
A systematic review of the application of machine learning in the detection and classification of transposable elements
BACKGROUND: Transposable elements (TEs) constitute the most common repeated sequences in eukaryotic genomes. Recent studies demonstrated their deep impact on species diversity, adaptation to the environment and diseases. Although there are many conventional bioinformatics algorithms for detecting an...
Autores principales: | Orozco-Arias, Simon, Isaza, Gustavo, Guyot, Romain, Tabares-Soto, Reinel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6967008/ https://www.ncbi.nlm.nih.gov/pubmed/31976169 http://dx.doi.org/10.7717/peerj.8311 |
Ejemplares similares
-
K-mer-based machine learning method to classify LTR-retrotransposons in plant genomes
por: Orozco-Arias, Simon, et al.
Publicado: (2021) -
Genomic object detection: An improved approach for transposable elements detection and classification using convolutional neural networks
por: Orozco-Arias, Simon, et al.
Publicado: (2023) -
TIP_finder: An HPC Software to Detect Transposable Element Insertion Polymorphisms in Large Genomic Datasets
por: Orozco-Arias, Simon, et al.
Publicado: (2020) -
A comparative study of machine learning and deep learning algorithms to classify cancer types based on microarray gene expression data
por: Tabares-Soto, Reinel, et al.
Publicado: (2020) -
Automatic curation of LTR retrotransposon libraries from plant genomes through machine learning
por: Orozco-Arias, Simon, et al.
Publicado: (2022)