Cargando…

qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data

Classification on the basis of gene expression data derived from RNA-seq promises to become an important part of modern medicine. We propose a new classification method based on a model where the data is marginally negative binomial but dependent, thereby incorporating the dependence known to be pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Koçhan, Necla, Tutuncu, G. Yazgi, Smyth, Gordon K., Gandolfo, Luke C., Giner, Göknur
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6967023/
https://www.ncbi.nlm.nih.gov/pubmed/31976167
http://dx.doi.org/10.7717/peerj.8260
_version_ 1783488865694121984
author Koçhan, Necla
Tutuncu, G. Yazgi
Smyth, Gordon K.
Gandolfo, Luke C.
Giner, Göknur
author_facet Koçhan, Necla
Tutuncu, G. Yazgi
Smyth, Gordon K.
Gandolfo, Luke C.
Giner, Göknur
author_sort Koçhan, Necla
collection PubMed
description Classification on the basis of gene expression data derived from RNA-seq promises to become an important part of modern medicine. We propose a new classification method based on a model where the data is marginally negative binomial but dependent, thereby incorporating the dependence known to be present between measurements from different genes. The method, called qtQDA, works by first performing a quantile transformation (qt) then applying Gaussian quadratic discriminant analysis (QDA) using regularized covariance matrix estimates. We show that qtQDA has excellent performance when applied to real data sets and has advantages over some existing approaches. An R package implementing the method is also available on https://github.com/goknurginer/qtQDA.
format Online
Article
Text
id pubmed-6967023
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-69670232020-01-23 qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data Koçhan, Necla Tutuncu, G. Yazgi Smyth, Gordon K. Gandolfo, Luke C. Giner, Göknur PeerJ Bioinformatics Classification on the basis of gene expression data derived from RNA-seq promises to become an important part of modern medicine. We propose a new classification method based on a model where the data is marginally negative binomial but dependent, thereby incorporating the dependence known to be present between measurements from different genes. The method, called qtQDA, works by first performing a quantile transformation (qt) then applying Gaussian quadratic discriminant analysis (QDA) using regularized covariance matrix estimates. We show that qtQDA has excellent performance when applied to real data sets and has advantages over some existing approaches. An R package implementing the method is also available on https://github.com/goknurginer/qtQDA. PeerJ Inc. 2019-12-18 /pmc/articles/PMC6967023/ /pubmed/31976167 http://dx.doi.org/10.7717/peerj.8260 Text en © 2019 Koçhan et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Bioinformatics
Koçhan, Necla
Tutuncu, G. Yazgi
Smyth, Gordon K.
Gandolfo, Luke C.
Giner, Göknur
qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data
title qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data
title_full qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data
title_fullStr qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data
title_full_unstemmed qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data
title_short qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data
title_sort qtqda: quantile transformed quadratic discriminant analysis for high-dimensional rna-seq data
topic Bioinformatics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6967023/
https://www.ncbi.nlm.nih.gov/pubmed/31976167
http://dx.doi.org/10.7717/peerj.8260
work_keys_str_mv AT kochannecla qtqdaquantiletransformedquadraticdiscriminantanalysisforhighdimensionalrnaseqdata
AT tutuncugyazgi qtqdaquantiletransformedquadraticdiscriminantanalysisforhighdimensionalrnaseqdata
AT smythgordonk qtqdaquantiletransformedquadraticdiscriminantanalysisforhighdimensionalrnaseqdata
AT gandolfolukec qtqdaquantiletransformedquadraticdiscriminantanalysisforhighdimensionalrnaseqdata
AT ginergoknur qtqdaquantiletransformedquadraticdiscriminantanalysisforhighdimensionalrnaseqdata