Cargando…
qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data
Classification on the basis of gene expression data derived from RNA-seq promises to become an important part of modern medicine. We propose a new classification method based on a model where the data is marginally negative binomial but dependent, thereby incorporating the dependence known to be pre...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6967023/ https://www.ncbi.nlm.nih.gov/pubmed/31976167 http://dx.doi.org/10.7717/peerj.8260 |
_version_ | 1783488865694121984 |
---|---|
author | Koçhan, Necla Tutuncu, G. Yazgi Smyth, Gordon K. Gandolfo, Luke C. Giner, Göknur |
author_facet | Koçhan, Necla Tutuncu, G. Yazgi Smyth, Gordon K. Gandolfo, Luke C. Giner, Göknur |
author_sort | Koçhan, Necla |
collection | PubMed |
description | Classification on the basis of gene expression data derived from RNA-seq promises to become an important part of modern medicine. We propose a new classification method based on a model where the data is marginally negative binomial but dependent, thereby incorporating the dependence known to be present between measurements from different genes. The method, called qtQDA, works by first performing a quantile transformation (qt) then applying Gaussian quadratic discriminant analysis (QDA) using regularized covariance matrix estimates. We show that qtQDA has excellent performance when applied to real data sets and has advantages over some existing approaches. An R package implementing the method is also available on https://github.com/goknurginer/qtQDA. |
format | Online Article Text |
id | pubmed-6967023 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69670232020-01-23 qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data Koçhan, Necla Tutuncu, G. Yazgi Smyth, Gordon K. Gandolfo, Luke C. Giner, Göknur PeerJ Bioinformatics Classification on the basis of gene expression data derived from RNA-seq promises to become an important part of modern medicine. We propose a new classification method based on a model where the data is marginally negative binomial but dependent, thereby incorporating the dependence known to be present between measurements from different genes. The method, called qtQDA, works by first performing a quantile transformation (qt) then applying Gaussian quadratic discriminant analysis (QDA) using regularized covariance matrix estimates. We show that qtQDA has excellent performance when applied to real data sets and has advantages over some existing approaches. An R package implementing the method is also available on https://github.com/goknurginer/qtQDA. PeerJ Inc. 2019-12-18 /pmc/articles/PMC6967023/ /pubmed/31976167 http://dx.doi.org/10.7717/peerj.8260 Text en © 2019 Koçhan et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Bioinformatics Koçhan, Necla Tutuncu, G. Yazgi Smyth, Gordon K. Gandolfo, Luke C. Giner, Göknur qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data |
title | qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data |
title_full | qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data |
title_fullStr | qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data |
title_full_unstemmed | qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data |
title_short | qtQDA: quantile transformed quadratic discriminant analysis for high-dimensional RNA-seq data |
title_sort | qtqda: quantile transformed quadratic discriminant analysis for high-dimensional rna-seq data |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6967023/ https://www.ncbi.nlm.nih.gov/pubmed/31976167 http://dx.doi.org/10.7717/peerj.8260 |
work_keys_str_mv | AT kochannecla qtqdaquantiletransformedquadraticdiscriminantanalysisforhighdimensionalrnaseqdata AT tutuncugyazgi qtqdaquantiletransformedquadraticdiscriminantanalysisforhighdimensionalrnaseqdata AT smythgordonk qtqdaquantiletransformedquadraticdiscriminantanalysisforhighdimensionalrnaseqdata AT gandolfolukec qtqdaquantiletransformedquadraticdiscriminantanalysisforhighdimensionalrnaseqdata AT ginergoknur qtqdaquantiletransformedquadraticdiscriminantanalysisforhighdimensionalrnaseqdata |