Cargando…

Four-dimensional micro-building blocks

Four-dimensional (4D) printing relies on multimaterial printing, reinforcement patterns, or micro/nanofibrous additives as programmable tools to achieve desired shape reconfigurations. However, existing programming approaches still follow the so-called origami design principle to generate reconfigur...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, T.-Y., Huang, H.-W., Jin, D. D., Chen, Q. Y., Huang, J. Y., Zhang, L., Duan, H. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968937/
https://www.ncbi.nlm.nih.gov/pubmed/32010763
http://dx.doi.org/10.1126/sciadv.aav8219
Descripción
Sumario:Four-dimensional (4D) printing relies on multimaterial printing, reinforcement patterns, or micro/nanofibrous additives as programmable tools to achieve desired shape reconfigurations. However, existing programming approaches still follow the so-called origami design principle to generate reconfigurable structures by self-folding stacked 2D materials, particularly at small scales. Here, we propose a programmable modular design that directly constructs 3D reconfigurable microstructures capable of sophisticated 3D-to-3D shape transformations by assembling 4D micro-building blocks. 4D direct laser writing is used to print two-photon polymerizable, stimuli-responsive hydrogels to construct building blocks at micrometer scales. Denavit-Hartenberg (DH) parameters, used to define robotic arm kinematics, are introduced as guidelines for how to assemble the micro-building blocks and plan the 3D motion of assembled chain blocks. Last, a 3D-printed microscaled transformer capable of changing its shape from a race car to a humanoid robot is devised and fabricated using the DH parameters to guide the motion of various assembled compartments.