Cargando…

Ultrafast optically induced spin transfer in ferromagnetic alloys

The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and length scales requires new approaches in experiment and theory to observe and understand these excitations. The ultimate speed limit for all-optical manipulation requires control scheme...

Descripción completa

Detalles Bibliográficos
Autores principales: Hofherr, M., Häuser, S., Dewhurst, J. K., Tengdin, P., Sakshath, S., Nembach, H. T., Weber, S. T., Shaw, J. M., Silva, T. J., Kapteyn, H. C., Cinchetti, M., Rethfeld, B., Murnane, M. M., Steil, D., Stadtmüller, B., Sharma, S., Aeschlimann, M., Mathias, S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968944/
https://www.ncbi.nlm.nih.gov/pubmed/32010774
http://dx.doi.org/10.1126/sciadv.aay8717
Descripción
Sumario:The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and length scales requires new approaches in experiment and theory to observe and understand these excitations. The ultimate speed limit for all-optical manipulation requires control schemes for which the electronic or magnetic subsystems of the materials are coherently manipulated on the time scale of the laser excitation pulse. In our work, we provide experimental evidence of such a direct, ultrafast, and coherent spin transfer between two magnetic subsystems of an alloy of Fe and Ni. Our experimental findings are fully supported by time-dependent density functional theory simulations and, hence, suggest the possibility of coherently controlling spin dynamics on subfemtosecond time scales, i.e., the birth of the research area of attomagnetism.