Cargando…
Hard plant tissues do not contribute meaningfully to dental microwear: evolutionary implications
Reconstructing diet is critical to understanding hominin adaptations. Isotopic and functional morphological analyses of early hominins are compatible with consumption of hard foods, such as mechanically-protected seeds, but dental microwear analyses are not. The protective shells surrounding seeds a...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969033/ https://www.ncbi.nlm.nih.gov/pubmed/31953510 http://dx.doi.org/10.1038/s41598-019-57403-w |
Sumario: | Reconstructing diet is critical to understanding hominin adaptations. Isotopic and functional morphological analyses of early hominins are compatible with consumption of hard foods, such as mechanically-protected seeds, but dental microwear analyses are not. The protective shells surrounding seeds are thought to induce complex enamel surface textures characterized by heavy pitting, but these are absent on the teeth of most early hominins. Here we report nanowear experiments showing that the hardest woody shells – the hardest tissues made by dicotyledonous plants – cause very minor damage to enamel but are themselves heavily abraded (worn) in the process. Thus, hard plant tissues do not regularly create pits on enamel surfaces despite high forces clearly being associated with their oral processing. We conclude that hard plant tissues barely influence microwear textures and the exploitation of seeds from graminoid plants such as grasses and sedges could have formed a critical element in the dietary ecology of hominins. |
---|