Cargando…

Measurement and State-Dependent Modulation of Hypoglossal Motor Excitability and Responsivity In-Vivo

Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. S...

Descripción completa

Detalles Bibliográficos
Autores principales: Aggarwal, Jasmin A., Liu, Wen-Ying, Montandon, Gaspard, Liu, Hattie, Hughes, Stuart W., Horner, Richard L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969049/
https://www.ncbi.nlm.nih.gov/pubmed/31953471
http://dx.doi.org/10.1038/s41598-019-57328-4
Descripción
Sumario:Motoneurons are the final output pathway for the brain’s influence on behavior. Here we identify properties of hypoglossal motor output to the tongue musculature. Tongue motor control is critical to the pathogenesis of obstructive sleep apnea, a common and serious sleep-related breathing disorder. Studies were performed on mice expressing a light sensitive cation channel exclusively on cholinergic neurons (ChAT-ChR2(H134R)-EYFP). Discrete photostimulations under isoflurane-induced anesthesia from an optical probe positioned above the medullary surface and hypoglossal motor nucleus elicited discrete increases in tongue motor output, with the magnitude of responses dependent on stimulation power (P < 0.001, n = 7) and frequency (P = 0.002, n = 8, with responses to 10 Hz stimulation greater than for 15–25 Hz, P < 0.022). Stimulations during REM sleep elicited significantly reduced responses at powers 3–20 mW compared to non-rapid eye movement (non-REM) sleep and wakefulness (each P < 0.05, n = 7). Response thresholds were also greater in REM sleep (10 mW) compared to non-REM and waking (3 to 5 mW, P < 0.05), and the slopes of the regressions between input photostimulation powers and output motor responses were specifically reduced in REM sleep (P < 0.001). This study identifies that variations in photostimulation input produce tunable changes in hypoglossal motor output in-vivo and identifies REM sleep specific suppression of net motor excitability and responsivity.