Cargando…
Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis
The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969523/ https://www.ncbi.nlm.nih.gov/pubmed/31843923 http://dx.doi.org/10.1073/pnas.1910262116 |
_version_ | 1783489342839193600 |
---|---|
author | Andreatta, Gabriele Broyart, Caroline Borghgraef, Charline Vadiwala, Karim Kozin, Vitaly Polo, Alessandra Bileck, Andrea Beets, Isabel Schoofs, Liliane Gerner, Christopher Raible, Florian |
author_facet | Andreatta, Gabriele Broyart, Caroline Borghgraef, Charline Vadiwala, Karim Kozin, Vitaly Polo, Alessandra Bileck, Andrea Beets, Isabel Schoofs, Liliane Gerner, Christopher Raible, Florian |
author_sort | Andreatta, Gabriele |
collection | PubMed |
description | The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand–receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm’s monthly cycle. |
format | Online Article Text |
id | pubmed-6969523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-69695232020-01-27 Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis Andreatta, Gabriele Broyart, Caroline Borghgraef, Charline Vadiwala, Karim Kozin, Vitaly Polo, Alessandra Bileck, Andrea Beets, Isabel Schoofs, Liliane Gerner, Christopher Raible, Florian Proc Natl Acad Sci U S A PNAS Plus The molecular mechanisms by which animals integrate external stimuli with internal energy balance to regulate major developmental and reproductive events still remain enigmatic. We investigated this aspect in the marine bristleworm, Platynereis dumerilii, a species where sexual maturation is tightly regulated by both metabolic state and lunar cycle. Our specific focus was on ligands and receptors of the gonadotropin-releasing hormone (GnRH) superfamily. Members of this superfamily are key in triggering sexual maturation in vertebrates but also regulate reproductive processes and energy homeostasis in invertebrates. Here we show that 3 of the 4 gnrh-like (gnrhl) preprohormone genes are expressed in specific and distinct neuronal clusters in the Platynereis brain. Moreover, ligand–receptor interaction analyses reveal a single Platynereis corazonin receptor (CrzR) to be activated by CRZ1/GnRHL1, CRZ2/GnRHL2, and GnRHL3 (previously classified as AKH1), whereas 2 AKH-type hormone receptors (GnRHR1/AKHR1 and GnRHR2/AKHR2) respond only to a single ligand (GnRH2/GnRHL4). Crz1/gnrhl1 exhibits a particularly strong up-regulation in sexually mature animals, after feeding, and in specific lunar phases. Homozygous crz1/gnrhl1 knockout animals exhibit a significant delay in maturation, reduced growth, and attenuated regeneration. Through a combination of proteomics and gene expression analysis, we identify enzymes involved in carbohydrate metabolism as transcriptional targets of CRZ1/GnRHL1 signaling. Our data suggest that Platynereis CRZ1/GnRHL1 coordinates glycoprotein turnover and energy homeostasis with growth and sexual maturation, integrating both metabolic and developmental demands with the worm’s monthly cycle. National Academy of Sciences 2020-01-14 2019-12-16 /pmc/articles/PMC6969523/ /pubmed/31843923 http://dx.doi.org/10.1073/pnas.1910262116 Text en Copyright © 2020 the Author(s). Published by PNAS. http://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | PNAS Plus Andreatta, Gabriele Broyart, Caroline Borghgraef, Charline Vadiwala, Karim Kozin, Vitaly Polo, Alessandra Bileck, Andrea Beets, Isabel Schoofs, Liliane Gerner, Christopher Raible, Florian Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis |
title | Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis |
title_full | Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis |
title_fullStr | Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis |
title_full_unstemmed | Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis |
title_short | Corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in Platynereis |
title_sort | corazonin signaling integrates energy homeostasis and lunar phase to regulate aspects of growth and sexual maturation in platynereis |
topic | PNAS Plus |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969523/ https://www.ncbi.nlm.nih.gov/pubmed/31843923 http://dx.doi.org/10.1073/pnas.1910262116 |
work_keys_str_mv | AT andreattagabriele corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis AT broyartcaroline corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis AT borghgraefcharline corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis AT vadiwalakarim corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis AT kozinvitaly corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis AT poloalessandra corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis AT bileckandrea corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis AT beetsisabel corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis AT schoofsliliane corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis AT gernerchristopher corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis AT raibleflorian corazoninsignalingintegratesenergyhomeostasisandlunarphasetoregulateaspectsofgrowthandsexualmaturationinplatynereis |