Cargando…

Salience Models: A Computational Cognitive Neuroscience Review

The seminal model by Laurent Itti and Cristoph Koch demonstrated that we can compute the entire flow of visual processing from input to resulting fixations. Despite many replications and follow-ups, few have matched the impact of the original model—so what made this model so groundbreaking? We have...

Descripción completa

Detalles Bibliográficos
Autores principales: Krasovskaya, Sofia, MacInnes, W. Joseph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969943/
https://www.ncbi.nlm.nih.gov/pubmed/31735857
http://dx.doi.org/10.3390/vision3040056
Descripción
Sumario:The seminal model by Laurent Itti and Cristoph Koch demonstrated that we can compute the entire flow of visual processing from input to resulting fixations. Despite many replications and follow-ups, few have matched the impact of the original model—so what made this model so groundbreaking? We have selected five key contributions that distinguish the original salience model by Itti and Koch; namely, its contribution to our theoretical, neural, and computational understanding of visual processing, as well as the spatial and temporal predictions for fixation distributions. During the last 20 years, advances in the field have brought up various techniques and approaches to salience modelling, many of which tried to improve or add to the initial Itti and Koch model. One of the most recent trends has been to adopt the computational power of deep learning neural networks; however, this has also shifted their primary focus to spatial classification. We present a review of recent approaches to modelling salience, starting from direct variations of the Itti and Koch salience model to sophisticated deep-learning architectures, and discuss the models from the point of view of their contribution to computational cognitive neuroscience.