Cargando…

The protective role of MiR-206 in regulating cardiomyocytes apoptosis induced by ischemic injury by targeting PTP1B

MicroRNAs play essential roles in the regulation and pathophysiology of acute myocardial infarction (AMI). The purpose of the present study was to assess the expression signature of miR-206 in rat heart with AMI and the corresponding molecular mechanism. The expression of miR-206 significantly decre...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Yejun, Dang, Hongwei, Zhang, Xin, Wang, Xia, Liu, Xiaodong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6970065/
https://www.ncbi.nlm.nih.gov/pubmed/31894853
http://dx.doi.org/10.1042/BSR20191000
Descripción
Sumario:MicroRNAs play essential roles in the regulation and pathophysiology of acute myocardial infarction (AMI). The purpose of the present study was to assess the expression signature of miR-206 in rat heart with AMI and the corresponding molecular mechanism. The expression of miR-206 significantly decreased in the infarcted myocardial areas and in hypoxia-induced cardiomyocytes, compared with that in the noninfarcted areas. Overexpression of miR-206 decreased cardiomyocytes apoptosis and the down-regulation of miR-206 increased cardiomyocytes apoptosis in vitro. In addition, overexpression of miR-206 in rat heart in vivo remarkably reduced myocardial infarct size and cardiomyocytes apoptosis. We identified that miR-206 had a protective effect on cardiomyocytes apoptosis with the association of its target protein tyrosine phosphatase 1B (PTP1B). Gain-of-function of miR-206 inhibited PTP1B expression and loss-of-function of miR-206 up-regulated PTP1B expression. Furthermore, overexpression of PTP1B significantly increased cardiomyocytes apoptosis. These results together suggest the protective effect of miR-206 against cardiomyocytes apoptosis induced by AMI by targeting PTP1B.