Cargando…

Design and Characteristic Analysis of a MEMS Piezo-Driven Recirculating Inkjet Printhead Using Lumped Element Modeling

The recirculation of ink in an inkjet printhead system keeps the ink temperature and viscosity constant, and leads to the development of a high-performance device. Herein, we propose a recirculating piezo-driven micro-electro-mechanical system (MEMS)-based inkjet printhead that has a pressure chambe...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Muhammad Ali, Lee, Duck-Gyu, Hur, Shin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6970235/
https://www.ncbi.nlm.nih.gov/pubmed/31698843
http://dx.doi.org/10.3390/mi10110757
Descripción
Sumario:The recirculation of ink in an inkjet printhead system keeps the ink temperature and viscosity constant, and leads to the development of a high-performance device. Herein, we propose a recirculating piezo-driven micro-electro-mechanical system (MEMS)-based inkjet printhead that has a pressure chamber, a nozzle, and double restrictors. The design and characteristic analysis are performed using a two-port lumped element model (LEM) to investigate the effect of design parameters on the system responses. Using LEM, the jetting pressure at the pressure chamber, velocity at the nozzle inlet, meniscus pressure, and Helmholtz resonance frequency are predicted and the comparative analysis of the jetting pressure and velocity between LEM and the finite element method (FEM) simulation is conducted to validate our proposed LEM method. Furthermore, the effect of a change in major design parameters on the jetting pressure, velocity, and Helmholtz resonance frequency is analyzed. On the basis of this analysis, the optimized device dimensions are finalized. From our analysis, it is also concluded that the restrictor is more sensitive than the pressure chamber in terms of their variations in depth. As the cross-talk effect can occur due to an array of hundreds or thousands of nozzles, we investigated the effect of a single activated nozzle on the non-activated neighboring nozzles, as well as the effect of multi-activated nozzles on a single central nozzle using our proposed LEM.