Cargando…

Evidence of extrinsic factors dominating intrinsic blood host preferences of major African malaria vectors

One of the key determinants of a haematophagous vector’s capacity to transmit pathogens is its selection of which host to secure a blood meal from. This choice is influenced by both intrinsic (genetic) and extrinsic (environmental) factors, but little is known of their relative contributions. Blood...

Descripción completa

Detalles Bibliográficos
Autores principales: Orsborne, James, Mohammed, Abdul Rahim, Jeffries, Claire L., Kristan, Mojca, Afrane, Yaw A., Walker, Thomas, Yakob, Laith
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971008/
https://www.ncbi.nlm.nih.gov/pubmed/31959845
http://dx.doi.org/10.1038/s41598-020-57732-1
Descripción
Sumario:One of the key determinants of a haematophagous vector’s capacity to transmit pathogens is its selection of which host to secure a blood meal from. This choice is influenced by both intrinsic (genetic) and extrinsic (environmental) factors, but little is known of their relative contributions. Blood fed Anopheles mosquitoes were collected from a malaria endemic village in Ghana. Collections were conducted across a range of different host availabilities and from both indoor and outdoor locations. These environmental factors were shown to impact dramatically the host choice of caught malaria vectors: mosquitoes caught indoors were ten-fold more likely to have sourced their blood meal from humans; and a halving in odds of being human-fed was found for mosquitoes caught only 25 m from the centre of the village. For the first time, we demonstrate that anthropophagy was better explained by extrinsic factors (namely, local host availability and indoor/outdoor trapping location) than intrinsic factors (namely, the (sibling) species of the mosquito caught) (respective Akaike information criterion estimates: 243.0 versus 359.8). Instead of characterizing biting behaviour on a taxonomic level, we illustrate the importance of assessing local entomology. Accounting for this behavioural plasticity is important, both in terms of measuring effectiveness of control programmes and in informing optimal disease control strategies.