Cargando…

Implications of Cattle Trade for the Spread and Control of Infectious Diseases in Slovenia

The objectives of this study were to gain insight into the structure of the cattle trade network in Slovenia and to evaluate the potential for infectious disease spread through movements. The study considered cattle movements between different types of premises that occurred between August 1, 2011 a...

Descripción completa

Detalles Bibliográficos
Autores principales: Knific, Tanja, Ocepek, Matjaž, Kirbiš, Andrej, Lentz, Hartmut H. K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971048/
https://www.ncbi.nlm.nih.gov/pubmed/31993442
http://dx.doi.org/10.3389/fvets.2019.00454
_version_ 1783489637393629184
author Knific, Tanja
Ocepek, Matjaž
Kirbiš, Andrej
Lentz, Hartmut H. K.
author_facet Knific, Tanja
Ocepek, Matjaž
Kirbiš, Andrej
Lentz, Hartmut H. K.
author_sort Knific, Tanja
collection PubMed
description The objectives of this study were to gain insight into the structure of the cattle trade network in Slovenia and to evaluate the potential for infectious disease spread through movements. The study considered cattle movements between different types of premises that occurred between August 1, 2011 and July 31, 2016 with the exclusion of the movements to the end nodes (e.g., slaughterhouses). In the first part, we performed a static network analysis on monthly and yearly snapshots of the network. These time scales reflect our interest in slowly spreading pathogens; namely Mycobacterium avium subsp. paratuberculosis (MAP), which causes paratuberculosis, a worldwide economically important disease. The results showed consistency in the network measures over time; nevertheless, it was evident that year to year contacts between premises were changing. The importance of individual premises for the network connectedness was highly heterogeneous and the most influential premises in the network were collection centers, mountain pastures, and pastures. Compared to random node removal, targeted removal informed by ranking based on local network measures from previous years was substantially more effective in network disassociation. Inclusion of the latest movement data improved the results. In the second part, we simulated disease spread using a Susceptible-Infectious (SI) model on the temporal network. The SI model was based on the empirically estimated true prevalence of paratuberculosis in Slovenia and four scenarios for probabilities of transmission. Different probabilities were realized by the generation of new networks with the corresponding proportion of contacts which were randomly selected from the original network. These diluted networks served as substrates for simulation of MAP spread. The probability of transmission had a significant influence on the velocity of disease spread through the network. The peaks in daily incidence rates of infected herds were observed at the end of the grazing period. Our results suggest that network analysis may provide support in the optimization of paratuberculosis surveillance and intervention in Slovenia. The approach of simulating disease spread on a diluted network may also be used to model other transmission pathways between herds.
format Online
Article
Text
id pubmed-6971048
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-69710482020-01-28 Implications of Cattle Trade for the Spread and Control of Infectious Diseases in Slovenia Knific, Tanja Ocepek, Matjaž Kirbiš, Andrej Lentz, Hartmut H. K. Front Vet Sci Veterinary Science The objectives of this study were to gain insight into the structure of the cattle trade network in Slovenia and to evaluate the potential for infectious disease spread through movements. The study considered cattle movements between different types of premises that occurred between August 1, 2011 and July 31, 2016 with the exclusion of the movements to the end nodes (e.g., slaughterhouses). In the first part, we performed a static network analysis on monthly and yearly snapshots of the network. These time scales reflect our interest in slowly spreading pathogens; namely Mycobacterium avium subsp. paratuberculosis (MAP), which causes paratuberculosis, a worldwide economically important disease. The results showed consistency in the network measures over time; nevertheless, it was evident that year to year contacts between premises were changing. The importance of individual premises for the network connectedness was highly heterogeneous and the most influential premises in the network were collection centers, mountain pastures, and pastures. Compared to random node removal, targeted removal informed by ranking based on local network measures from previous years was substantially more effective in network disassociation. Inclusion of the latest movement data improved the results. In the second part, we simulated disease spread using a Susceptible-Infectious (SI) model on the temporal network. The SI model was based on the empirically estimated true prevalence of paratuberculosis in Slovenia and four scenarios for probabilities of transmission. Different probabilities were realized by the generation of new networks with the corresponding proportion of contacts which were randomly selected from the original network. These diluted networks served as substrates for simulation of MAP spread. The probability of transmission had a significant influence on the velocity of disease spread through the network. The peaks in daily incidence rates of infected herds were observed at the end of the grazing period. Our results suggest that network analysis may provide support in the optimization of paratuberculosis surveillance and intervention in Slovenia. The approach of simulating disease spread on a diluted network may also be used to model other transmission pathways between herds. Frontiers Media S.A. 2020-01-14 /pmc/articles/PMC6971048/ /pubmed/31993442 http://dx.doi.org/10.3389/fvets.2019.00454 Text en Copyright © 2020 Knific, Ocepek, Kirbiš and Lentz. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Veterinary Science
Knific, Tanja
Ocepek, Matjaž
Kirbiš, Andrej
Lentz, Hartmut H. K.
Implications of Cattle Trade for the Spread and Control of Infectious Diseases in Slovenia
title Implications of Cattle Trade for the Spread and Control of Infectious Diseases in Slovenia
title_full Implications of Cattle Trade for the Spread and Control of Infectious Diseases in Slovenia
title_fullStr Implications of Cattle Trade for the Spread and Control of Infectious Diseases in Slovenia
title_full_unstemmed Implications of Cattle Trade for the Spread and Control of Infectious Diseases in Slovenia
title_short Implications of Cattle Trade for the Spread and Control of Infectious Diseases in Slovenia
title_sort implications of cattle trade for the spread and control of infectious diseases in slovenia
topic Veterinary Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971048/
https://www.ncbi.nlm.nih.gov/pubmed/31993442
http://dx.doi.org/10.3389/fvets.2019.00454
work_keys_str_mv AT knifictanja implicationsofcattletradeforthespreadandcontrolofinfectiousdiseasesinslovenia
AT ocepekmatjaz implicationsofcattletradeforthespreadandcontrolofinfectiousdiseasesinslovenia
AT kirbisandrej implicationsofcattletradeforthespreadandcontrolofinfectiousdiseasesinslovenia
AT lentzhartmuthk implicationsofcattletradeforthespreadandcontrolofinfectiousdiseasesinslovenia