Cargando…
A Privacy-Preserving Multi-Task Learning Framework for Face Detection, Landmark Localization, Pose Estimation, and Gender Recognition
Recently, multi-task learning (MTL) has been extensively studied for various face processing tasks, including face detection, landmark localization, pose estimation, and gender recognition. This approach endeavors to train a better model by exploiting the synergy among the related tasks. However, th...
Autores principales: | Zhang, Chen, Hu, Xiongwei, Xie, Yu, Gong, Maoguo, Yu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971161/ https://www.ncbi.nlm.nih.gov/pubmed/31992979 http://dx.doi.org/10.3389/fnbot.2019.00112 |
Ejemplares similares
-
Effect of Face Blurring on Human Pose Estimation: Ensuring Subject Privacy for Medical and Occupational Health Applications
por: Jiang, Jindong, et al.
Publicado: (2022) -
Privacy-Preserving Task Offloading Strategies in MEC
por: Yu, Haijian, et al.
Publicado: (2022) -
Privacy protection framework for face recognition in edge-based Internet of Things
por: Xie, Yun, et al.
Publicado: (2022) -
Research on the Privacy Security of Face Recognition Technology
por: Pang, Luning
Publicado: (2022) -
dsMTL: a computational framework for privacy-preserving, distributed multi-task machine learning
por: Cao, Han, et al.
Publicado: (2022)