Cargando…
Automated Detection of Autism Spectrum Disorder Using a Convolutional Neural Network
Background: Convolutional neural networks (CNN) have enabled significant progress in speech recognition, image classification, automotive software engineering, and neuroscience. This impressive progress is largely due to a combination of algorithmic breakthroughs, computation resource improvements,...
Autores principales: | Sherkatghanad, Zeinab, Akhondzadeh, Mohammadsadegh, Salari, Soorena, Zomorodi-Moghadam, Mariam, Abdar, Moloud, Acharya, U. Rajendra, Khosrowabadi, Reza, Salari, Vahid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971220/ https://www.ncbi.nlm.nih.gov/pubmed/32009868 http://dx.doi.org/10.3389/fnins.2019.01325 |
Ejemplares similares
-
Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review
por: Sherkatghanad, Zeinab, et al.
Publicado: (2023) -
UncertaintyFuseNet: Robust uncertainty-aware hierarchical feature fusion model with Ensemble Monte Carlo Dropout for COVID-19 detection
por: Abdar, Moloud, et al.
Publicado: (2023) -
An optimizing method for performance and resource utilization in quantum machine learning circuits
por: Salehi, Tahereh, et al.
Publicado: (2022) -
Quantum face recognition protocol with ghost imaging
por: Salari, Vahid, et al.
Publicado: (2023) -
Automated Detection of Presymptomatic Conditions in Spinocerebellar Ataxia Type 2 Using Monte Carlo Dropout and Deep Neural Network Techniques with Electrooculogram Signals
por: Stoean, Catalin, et al.
Publicado: (2020)