Cargando…
The SUSTech-SYSU dataset for automatically segmenting and classifying corneal ulcers
Corneal ulcer is a common ophthalmic symptom. Segmentation algorithms are needed to identify and quantify corneal ulcers from ocular staining images. Developments of such algorithms have been obstructed by a lack of high quality datasets (the ocular staining images and the corresponding gold-standar...
Autores principales: | Deng, Lijie, Lyu, Junyan, Huang, Haixiang, Deng, Yuqing, Yuan, Jin, Tang, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971241/ https://www.ncbi.nlm.nih.gov/pubmed/31959768 http://dx.doi.org/10.1038/s41597-020-0360-7 |
Ejemplares similares
-
The SUSTech-SYSU dataset for automated exudate detection and diabetic retinopathy grading
por: Lin, Li, et al.
Publicado: (2020) -
An automatic multi-tissue human fetal brain segmentation benchmark using the Fetal Tissue Annotation Dataset
por: Payette, Kelly, et al.
Publicado: (2021) -
BAGLS, a multihospital Benchmark for Automatic Glottis Segmentation
por: Gómez, Pablo, et al.
Publicado: (2020) -
Automatic question answering for multiple stakeholders, the epidemic question answering dataset
por: Goodwin, Travis R., et al.
Publicado: (2022) -
An annotated fluorescence image dataset for training nuclear segmentation methods
por: Kromp, Florian, et al.
Publicado: (2020)