Cargando…
Machine learning with autophagy-related proteins for discriminating renal cell carcinoma subtypes
Machine learning techniques have been previously applied for classification of tumors based largely on morphological features of tumor cells recognized in H&E images. Here, we tested the possibility of using numeric data acquired from software-based quantification of certain marker proteins, i.e...
Autores principales: | He, Zhaoyue, Liu, He, Moch, Holger, Simon, Hans-Uwe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971298/ https://www.ncbi.nlm.nih.gov/pubmed/31959887 http://dx.doi.org/10.1038/s41598-020-57670-y |
Ejemplares similares
-
Downregulation of Autophagy-Related Proteins 1, 5, and 16 in Testicular Germ Cell Tumors Parallels Lowered LC3B and Elevated p62 Levels, Suggesting Reduced Basal Autophagy
por: Liu, He, et al.
Publicado: (2018) -
The synergism of spatial metabolomics and morphometry improves machine learning‐based renal tumour subtype classification
por: Prade, Verena M., et al.
Publicado: (2022) -
A novel link between p53 and ROS
por: He, Zhaoyue, et al.
Publicado: (2013) -
Radiomic Features and Machine Learning for the Discrimination of Renal Tumor Histological Subtypes: A Pragmatic Study Using Clinical-Routine Computed Tomography
por: Uhlig, Johannes, et al.
Publicado: (2020) -
Papillary renal cell carcinoma: current and controversial issues
por: Angori, Silvia, et al.
Publicado: (2022)