Cargando…
Computational method for multiphase flow characterization in the gas refinery
This paper presents a new computational method for the decentralized multiphase flow measurement based on the interconnections between the two subsystems to precisely estimate the states of the multiphase flow at the gas refinery. The states of the condensate and gas sub-systems were separately esti...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971397/ https://www.ncbi.nlm.nih.gov/pubmed/31993517 http://dx.doi.org/10.1016/j.heliyon.2020.e03193 |
Sumario: | This paper presents a new computational method for the decentralized multiphase flow measurement based on the interconnections between the two subsystems to precisely estimate the states of the multiphase flow at the gas refinery. The states of the condensate and gas sub-systems were separately estimated using the Differential Mean Value Theorem by considering the relationship between two subsystems, designing an observer and converting the conditions to linear matrix inequality. To check the stability and performance of the system against the changes, the Lyapunov theory has been used. The states behavior investigated with and without disturbance in the system output and dynamics. Additionally, the Unscented Kalman Filter based on the simplified drift flux model was used to estimate the states. It is found that both observers are capable to identify the states with some differences in performance and drift flux model is sufficient for estimation of parameters and states. |
---|