Cargando…

Injectable supramolecular polymer–nanoparticle hydrogels enhance human mesenchymal stem cell delivery

Stem cell therapies have emerged as promising treatments for injuries and diseases in regenerative medicine. Yet, delivering stem cells therapeutically can be complicated by invasive administration techniques, heterogeneity in the injection media, and/or poor cell retention at the injection site. De...

Descripción completa

Detalles Bibliográficos
Autores principales: Grosskopf, Abigail K., Roth, Gillie A., Smith, Anton A. A., Gale, Emily C., Hernandez, Hector Lopez, Appel, Eric A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971438/
https://www.ncbi.nlm.nih.gov/pubmed/31989036
http://dx.doi.org/10.1002/btm2.10147
_version_ 1783489726175510528
author Grosskopf, Abigail K.
Roth, Gillie A.
Smith, Anton A. A.
Gale, Emily C.
Hernandez, Hector Lopez
Appel, Eric A.
author_facet Grosskopf, Abigail K.
Roth, Gillie A.
Smith, Anton A. A.
Gale, Emily C.
Hernandez, Hector Lopez
Appel, Eric A.
author_sort Grosskopf, Abigail K.
collection PubMed
description Stem cell therapies have emerged as promising treatments for injuries and diseases in regenerative medicine. Yet, delivering stem cells therapeutically can be complicated by invasive administration techniques, heterogeneity in the injection media, and/or poor cell retention at the injection site. Despite these issues, traditional administration protocols using bolus injections in a saline solution or surgical implants of cell‐laden hydrogels have highlighted the promise of cell administration as a treatment strategy. To address these limitations, we have designed an injectable polymer–nanoparticle (PNP) hydrogel platform exploiting multivalent, noncovalent interactions between modified biopolymers and biodegradable nanoparticles for encapsulation and delivery of human mesenchymal stem cells (hMSCs). hMSC‐based therapies have shown promise due to their broad differentiation capacities and production of therapeutic paracrine signaling molecules. In this work, the fundamental hydrogel mechanical properties that enhance hMSC delivery processes are elucidated using basic in vitro models. Further, in vivo studies in immunocompetent mice reveal that PNP hydrogels enhance hMSC retention at the injection site and retain administered hMSCs locally for upwards of 2 weeks. Through both in vitro and in vivo experiments, we demonstrate a novel scalable, synthetic, and biodegradable hydrogel system that overcomes current limitations and enables effective cell delivery.
format Online
Article
Text
id pubmed-6971438
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-69714382020-01-27 Injectable supramolecular polymer–nanoparticle hydrogels enhance human mesenchymal stem cell delivery Grosskopf, Abigail K. Roth, Gillie A. Smith, Anton A. A. Gale, Emily C. Hernandez, Hector Lopez Appel, Eric A. Bioeng Transl Med Research Reports Stem cell therapies have emerged as promising treatments for injuries and diseases in regenerative medicine. Yet, delivering stem cells therapeutically can be complicated by invasive administration techniques, heterogeneity in the injection media, and/or poor cell retention at the injection site. Despite these issues, traditional administration protocols using bolus injections in a saline solution or surgical implants of cell‐laden hydrogels have highlighted the promise of cell administration as a treatment strategy. To address these limitations, we have designed an injectable polymer–nanoparticle (PNP) hydrogel platform exploiting multivalent, noncovalent interactions between modified biopolymers and biodegradable nanoparticles for encapsulation and delivery of human mesenchymal stem cells (hMSCs). hMSC‐based therapies have shown promise due to their broad differentiation capacities and production of therapeutic paracrine signaling molecules. In this work, the fundamental hydrogel mechanical properties that enhance hMSC delivery processes are elucidated using basic in vitro models. Further, in vivo studies in immunocompetent mice reveal that PNP hydrogels enhance hMSC retention at the injection site and retain administered hMSCs locally for upwards of 2 weeks. Through both in vitro and in vivo experiments, we demonstrate a novel scalable, synthetic, and biodegradable hydrogel system that overcomes current limitations and enables effective cell delivery. John Wiley & Sons, Inc. 2019-10-22 /pmc/articles/PMC6971438/ /pubmed/31989036 http://dx.doi.org/10.1002/btm2.10147 Text en © 2019 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals, Inc. on behalf of The American Institute of Chemical Engineers. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Reports
Grosskopf, Abigail K.
Roth, Gillie A.
Smith, Anton A. A.
Gale, Emily C.
Hernandez, Hector Lopez
Appel, Eric A.
Injectable supramolecular polymer–nanoparticle hydrogels enhance human mesenchymal stem cell delivery
title Injectable supramolecular polymer–nanoparticle hydrogels enhance human mesenchymal stem cell delivery
title_full Injectable supramolecular polymer–nanoparticle hydrogels enhance human mesenchymal stem cell delivery
title_fullStr Injectable supramolecular polymer–nanoparticle hydrogels enhance human mesenchymal stem cell delivery
title_full_unstemmed Injectable supramolecular polymer–nanoparticle hydrogels enhance human mesenchymal stem cell delivery
title_short Injectable supramolecular polymer–nanoparticle hydrogels enhance human mesenchymal stem cell delivery
title_sort injectable supramolecular polymer–nanoparticle hydrogels enhance human mesenchymal stem cell delivery
topic Research Reports
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971438/
https://www.ncbi.nlm.nih.gov/pubmed/31989036
http://dx.doi.org/10.1002/btm2.10147
work_keys_str_mv AT grosskopfabigailk injectablesupramolecularpolymernanoparticlehydrogelsenhancehumanmesenchymalstemcelldelivery
AT rothgilliea injectablesupramolecularpolymernanoparticlehydrogelsenhancehumanmesenchymalstemcelldelivery
AT smithantonaa injectablesupramolecularpolymernanoparticlehydrogelsenhancehumanmesenchymalstemcelldelivery
AT galeemilyc injectablesupramolecularpolymernanoparticlehydrogelsenhancehumanmesenchymalstemcelldelivery
AT hernandezhectorlopez injectablesupramolecularpolymernanoparticlehydrogelsenhancehumanmesenchymalstemcelldelivery
AT appelerica injectablesupramolecularpolymernanoparticlehydrogelsenhancehumanmesenchymalstemcelldelivery