Cargando…

Impaired Metabolic Flexibility to High-Fat Overfeeding Predicts Future Weight Gain in Healthy Adults

The ability to switch fuels for oxidation in response to changes in macronutrient composition of diet (metabolic flexibility) may be informative of individuals’ susceptibility to weight gain. Seventy-nine healthy, weight-stable participants underwent 24-h assessments of energy expenditure and respir...

Descripción completa

Detalles Bibliográficos
Autores principales: Begaye, Brittany, Vinales, Karyne L., Hollstein, Tim, Ando, Takafumi, Walter, Mary, Bogardus, Clifton, Krakoff, Jonathan, Piaggi, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971489/
https://www.ncbi.nlm.nih.gov/pubmed/31712321
http://dx.doi.org/10.2337/db19-0719
Descripción
Sumario:The ability to switch fuels for oxidation in response to changes in macronutrient composition of diet (metabolic flexibility) may be informative of individuals’ susceptibility to weight gain. Seventy-nine healthy, weight-stable participants underwent 24-h assessments of energy expenditure and respiratory quotient (RQ) in a whole-room calorimeter during energy balance (EBL) (50% carbohydrate, 30% fat) and then during 24-h fasting and three 200% overfeeding diets in a crossover design. Metabolic flexibility was defined as the change in 24-h RQ from EBL during fasting and standard overfeeding (STOF) (50% carbohydrate, 30% fat), high-fat overfeeding (HFOF) (60% fat, 20% carbohydrate), and high-carbohydrate overfeeding (HCOF) (75% carbohydrate, 5% fat) diets. Free-living weight change was assessed after 6 and 12 months. Compared with EBL, RQ decreased on average by 9% during fasting and by 4% during HFOF but increased by 4% during STOF and by 8% during HCOF. A smaller decrease in RQ, reflecting a smaller increase in lipid oxidation rate, during HFOF but not during the other diets predicted greater weight gain at both 6 and 12 months. An impaired metabolic flexibility to acute HFOF can identify individuals prone to weight gain, indicating that an individual’s capacity to oxidize dietary fat is a metabolic determinant of weight change.