Cargando…

Differential basal expression of immune genes confers Crassostrea gigas resistance to Pacific oyster mortality syndrome

BACKGROUND: As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has e...

Descripción completa

Detalles Bibliográficos
Autores principales: de Lorgeril, Julien, Petton, Bruno, Lucasson, Aude, Perez, Valérie, Stenger, Pierre-Louis, Dégremont, Lionel, Montagnani, Caroline, Escoubas, Jean-Michel, Haffner, Philippe, Allienne, Jean-François, Leroy, Marc, Lagarde, Franck, Vidal-Dupiol, Jérémie, Gueguen, Yannick, Mitta, Guillaume
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971885/
https://www.ncbi.nlm.nih.gov/pubmed/31959106
http://dx.doi.org/10.1186/s12864-020-6471-x
Descripción
Sumario:BACKGROUND: As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible). RESULTS: We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype. CONCLUSIONS: We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.