Cargando…
Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement
Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between m...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972559/ https://www.ncbi.nlm.nih.gov/pubmed/31714661 http://dx.doi.org/10.1002/anie.201911546 |
_version_ | 1783489857260093440 |
---|---|
author | Wang, Zuyuan Rolle, Konrad Schilling, Theresa Hummel, Patrick Philipp, Alexandra Kopera, Bernd A. F. Lechner, Anna M. Retsch, Markus Breu, Josef Fytas, George |
author_facet | Wang, Zuyuan Rolle, Konrad Schilling, Theresa Hummel, Patrick Philipp, Alexandra Kopera, Bernd A. F. Lechner, Anna M. Retsch, Markus Breu, Josef Fytas, George |
author_sort | Wang, Zuyuan |
collection | PubMed |
description | Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between mechanical and thermal properties is missing, due to the lack of measurements of direction‐dependent mechanical properties. In this work, exceptionally coherent and transparent hybrid Bragg stacks made of strictly alternating mica‐type nanosheets (synthetic hectorite) and polymer layers (polyvinylpyrrolidone) were fabricated at large scale. Distinct from ordinary nanocomposites, these stacks display long‐range periodicity, which is tunable down to angstrom precision. A large thermal transport anisotropy (up to 38) is consequently observed, with the high in‐plane thermal conductivity (up to 5.7 W m(−1) K(−1)) exhibiting an effective medium behavior. The unique hybrid material combined with advanced characterization techniques allows correlating the full elastic tensors to the direction‐dependent thermal conductivities. We, therefore, provide a first analysis on how the direction‐dependent Young's and shear moduli influence the flow of heat. |
format | Online Article Text |
id | pubmed-6972559 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69725592020-01-27 Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement Wang, Zuyuan Rolle, Konrad Schilling, Theresa Hummel, Patrick Philipp, Alexandra Kopera, Bernd A. F. Lechner, Anna M. Retsch, Markus Breu, Josef Fytas, George Angew Chem Int Ed Engl Research Articles Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between mechanical and thermal properties is missing, due to the lack of measurements of direction‐dependent mechanical properties. In this work, exceptionally coherent and transparent hybrid Bragg stacks made of strictly alternating mica‐type nanosheets (synthetic hectorite) and polymer layers (polyvinylpyrrolidone) were fabricated at large scale. Distinct from ordinary nanocomposites, these stacks display long‐range periodicity, which is tunable down to angstrom precision. A large thermal transport anisotropy (up to 38) is consequently observed, with the high in‐plane thermal conductivity (up to 5.7 W m(−1) K(−1)) exhibiting an effective medium behavior. The unique hybrid material combined with advanced characterization techniques allows correlating the full elastic tensors to the direction‐dependent thermal conductivities. We, therefore, provide a first analysis on how the direction‐dependent Young's and shear moduli influence the flow of heat. John Wiley and Sons Inc. 2019-12-04 2020-01-13 /pmc/articles/PMC6972559/ /pubmed/31714661 http://dx.doi.org/10.1002/anie.201911546 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Wang, Zuyuan Rolle, Konrad Schilling, Theresa Hummel, Patrick Philipp, Alexandra Kopera, Bernd A. F. Lechner, Anna M. Retsch, Markus Breu, Josef Fytas, George Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement |
title | Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement |
title_full | Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement |
title_fullStr | Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement |
title_full_unstemmed | Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement |
title_short | Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement |
title_sort | tunable thermoelastic anisotropy in hybrid bragg stacks with extreme polymer confinement |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972559/ https://www.ncbi.nlm.nih.gov/pubmed/31714661 http://dx.doi.org/10.1002/anie.201911546 |
work_keys_str_mv | AT wangzuyuan tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement AT rollekonrad tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement AT schillingtheresa tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement AT hummelpatrick tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement AT philippalexandra tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement AT koperaberndaf tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement AT lechnerannam tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement AT retschmarkus tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement AT breujosef tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement AT fytasgeorge tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement |