Cargando…

Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement

Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between m...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zuyuan, Rolle, Konrad, Schilling, Theresa, Hummel, Patrick, Philipp, Alexandra, Kopera, Bernd A. F., Lechner, Anna M., Retsch, Markus, Breu, Josef, Fytas, George
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972559/
https://www.ncbi.nlm.nih.gov/pubmed/31714661
http://dx.doi.org/10.1002/anie.201911546
_version_ 1783489857260093440
author Wang, Zuyuan
Rolle, Konrad
Schilling, Theresa
Hummel, Patrick
Philipp, Alexandra
Kopera, Bernd A. F.
Lechner, Anna M.
Retsch, Markus
Breu, Josef
Fytas, George
author_facet Wang, Zuyuan
Rolle, Konrad
Schilling, Theresa
Hummel, Patrick
Philipp, Alexandra
Kopera, Bernd A. F.
Lechner, Anna M.
Retsch, Markus
Breu, Josef
Fytas, George
author_sort Wang, Zuyuan
collection PubMed
description Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between mechanical and thermal properties is missing, due to the lack of measurements of direction‐dependent mechanical properties. In this work, exceptionally coherent and transparent hybrid Bragg stacks made of strictly alternating mica‐type nanosheets (synthetic hectorite) and polymer layers (polyvinylpyrrolidone) were fabricated at large scale. Distinct from ordinary nanocomposites, these stacks display long‐range periodicity, which is tunable down to angstrom precision. A large thermal transport anisotropy (up to 38) is consequently observed, with the high in‐plane thermal conductivity (up to 5.7 W m(−1) K(−1)) exhibiting an effective medium behavior. The unique hybrid material combined with advanced characterization techniques allows correlating the full elastic tensors to the direction‐dependent thermal conductivities. We, therefore, provide a first analysis on how the direction‐dependent Young's and shear moduli influence the flow of heat.
format Online
Article
Text
id pubmed-6972559
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-69725592020-01-27 Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement Wang, Zuyuan Rolle, Konrad Schilling, Theresa Hummel, Patrick Philipp, Alexandra Kopera, Bernd A. F. Lechner, Anna M. Retsch, Markus Breu, Josef Fytas, George Angew Chem Int Ed Engl Research Articles Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between mechanical and thermal properties is missing, due to the lack of measurements of direction‐dependent mechanical properties. In this work, exceptionally coherent and transparent hybrid Bragg stacks made of strictly alternating mica‐type nanosheets (synthetic hectorite) and polymer layers (polyvinylpyrrolidone) were fabricated at large scale. Distinct from ordinary nanocomposites, these stacks display long‐range periodicity, which is tunable down to angstrom precision. A large thermal transport anisotropy (up to 38) is consequently observed, with the high in‐plane thermal conductivity (up to 5.7 W m(−1) K(−1)) exhibiting an effective medium behavior. The unique hybrid material combined with advanced characterization techniques allows correlating the full elastic tensors to the direction‐dependent thermal conductivities. We, therefore, provide a first analysis on how the direction‐dependent Young's and shear moduli influence the flow of heat. John Wiley and Sons Inc. 2019-12-04 2020-01-13 /pmc/articles/PMC6972559/ /pubmed/31714661 http://dx.doi.org/10.1002/anie.201911546 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Wang, Zuyuan
Rolle, Konrad
Schilling, Theresa
Hummel, Patrick
Philipp, Alexandra
Kopera, Bernd A. F.
Lechner, Anna M.
Retsch, Markus
Breu, Josef
Fytas, George
Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement
title Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement
title_full Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement
title_fullStr Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement
title_full_unstemmed Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement
title_short Tunable Thermoelastic Anisotropy in Hybrid Bragg Stacks with Extreme Polymer Confinement
title_sort tunable thermoelastic anisotropy in hybrid bragg stacks with extreme polymer confinement
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972559/
https://www.ncbi.nlm.nih.gov/pubmed/31714661
http://dx.doi.org/10.1002/anie.201911546
work_keys_str_mv AT wangzuyuan tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement
AT rollekonrad tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement
AT schillingtheresa tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement
AT hummelpatrick tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement
AT philippalexandra tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement
AT koperaberndaf tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement
AT lechnerannam tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement
AT retschmarkus tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement
AT breujosef tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement
AT fytasgeorge tunablethermoelasticanisotropyinhybridbraggstackswithextremepolymerconfinement