Cargando…

What makes a volatile organic compound a reliable indicator of insect herbivory?

Plants that are subject to insect herbivory emit a blend of so‐called herbivore‐induced plant volatiles (HIPVs), of which only a few serve as cues for the carnivorous enemies to locate their host. We lack understanding which HIPVs are reliable indicators of insect herbivory. Here, we take a modellin...

Descripción completa

Detalles Bibliográficos
Autores principales: Douma, Jacob C., Ganzeveld, Laurens N., Unsicker, Sybille B., Boeckler, G. Andreas, Dicke, Marcel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972585/
https://www.ncbi.nlm.nih.gov/pubmed/31330571
http://dx.doi.org/10.1111/pce.13624
Descripción
Sumario:Plants that are subject to insect herbivory emit a blend of so‐called herbivore‐induced plant volatiles (HIPVs), of which only a few serve as cues for the carnivorous enemies to locate their host. We lack understanding which HIPVs are reliable indicators of insect herbivory. Here, we take a modelling approach to elucidate which physicochemical and physiological properties contribute to the information value of a HIPV. A leaf‐level HIPV synthesis and emission model is developed and parameterized to poplar. Next, HIPV concentrations within the canopy are inferred as a function of dispersion, transport and chemical degradation of the compounds. We show that the ability of HIPVs to reveal herbivory varies from almost perfect to no better than chance and interacts with canopy conditions. Model predictions matched well with leaf‐emission measurements and field and laboratory assays. The chemical class a compound belongs to predicted the signalling ability of a compound only to a minor extent, whereas compound characteristics such as its reaction rate with atmospheric oxidants, biosynthesis rate upon herbivory and volatility were much more important predictors. This study shows the power of merging fields of plant–insect interactions and atmospheric chemistry research to increase our understanding of the ecological significance of HIPVs.