Cargando…
Accelerated Photo‐Induced Degradation of Benzidine‐p‐Aminothiophenolate Immobilized at Light‐Enhancing TiO(2) Nanotube Electrodes
Herein, the enhanced visible‐light‐induced degradation of the azo‐dye benzidine‐p‐aminothiophenolate immobilized on TiO(2) nanotube electrodes is reported. Exploiting the reported photonic properties of the TiO(2) support and the strong electronic absorption of the dye allowed for employing surface‐...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972621/ https://www.ncbi.nlm.nih.gov/pubmed/31533198 http://dx.doi.org/10.1002/chem.201902963 |
Sumario: | Herein, the enhanced visible‐light‐induced degradation of the azo‐dye benzidine‐p‐aminothiophenolate immobilized on TiO(2) nanotube electrodes is reported. Exploiting the reported photonic properties of the TiO(2) support and the strong electronic absorption of the dye allowed for employing surface‐enhanced resonance Raman spectroscopy at 413 nm to simultaneously trigger the photoreaction and follow the time‐dependent decay process. Degradation rate constants of up to 25 s(−1) were observed, which stand among the highest reported values for laser‐induced degradation of immobilized dyes on photonically active supports. Contrast experiments with two differently light‐enhancing TiO(2) nanotube electrodes establish the direct correlation of the material's optical response, that is, electromagnetic field enhancement, on the interfacial photocatalytic reaction. |
---|