Cargando…
Structural Analysis and Optimization of Convolutional Neural Networks with a Small Sample Size
Deep neural networks have gained immense popularity in the Big Data problem; however, the availability of training samples can be relatively limited in specific application domains, particularly medical imaging, and consequently leading to overfitting problems. This “Small Data” challenge may need a...
Autores principales: | D’souza, Rhett N., Huang, Po-Yao, Yeh, Fang-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972775/ https://www.ncbi.nlm.nih.gov/pubmed/31965034 http://dx.doi.org/10.1038/s41598-020-57866-2 |
Ejemplares similares
-
Deep Hybrid Convolutional Neural Network for Segmentation of Melanoma Skin Lesion
por: Yang, Cheng-Hong, et al.
Publicado: (2021) -
Machine Learning Versus Logistic Regression Methods for 2-Year Mortality Prognostication in a Small, Heterogeneous Glioma Database
por: Panesar, Sandip S., et al.
Publicado: (2019) -
Pupil Size Prediction Techniques Based on Convolution Neural Network
por: Whang, Allen Jong-Woei, et al.
Publicado: (2021) -
Optimization of convolutional neural network hyperparameters for automatic classification of adult mosquitoes
por: Motta, Daniel, et al.
Publicado: (2020) -
Energy Profile Bayes and Thompson Optimized Convolutional Neural Network protein structure prediction
por: Nallasamy, Varanavasi, et al.
Publicado: (2022)