Cargando…
High mortality rates in a juvenile free‐ranging marine predator and links to dive and forage ability
1. High juvenile mortality rates are typical of many long‐lived marine vertebrate predators. Insufficient development in dive and forage ability is considered a key driver of this. However, direct links to survival outcome are sparse, particularly in free‐ranging marine animals that may not return t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972805/ https://www.ncbi.nlm.nih.gov/pubmed/31988734 http://dx.doi.org/10.1002/ece3.5905 |
_version_ | 1783489910829744128 |
---|---|
author | Cox, Sam L. Authier, Matthieu Orgeret, Florian Weimerskirch, Henri Guinet, Christophe |
author_facet | Cox, Sam L. Authier, Matthieu Orgeret, Florian Weimerskirch, Henri Guinet, Christophe |
author_sort | Cox, Sam L. |
collection | PubMed |
description | 1. High juvenile mortality rates are typical of many long‐lived marine vertebrate predators. Insufficient development in dive and forage ability is considered a key driver of this. However, direct links to survival outcome are sparse, particularly in free‐ranging marine animals that may not return to land. 2. In this study, we conduct exploratory investigations toward early mortality in juvenile southern elephant seals Mirounga leonina. Twenty postweaning pups were equipped with (a) a new‐generation satellite relay data tag, capable of remotely transmitting fine‐scale behavioral movements from accelerometers, and (b) a location transmitting only tag (so that mortality events could be distinguished from device failures). Individuals were followed during their first trip at sea (until mortality or return to land). Two analyses were conducted. First, the behavioral movements and encountered environmental conditions of nonsurviving pups were individually compared to temporally concurrent observations from grouped survivors. Second, common causes of mortality were investigated using Cox's proportional hazard regression and penalized shrinkage techniques. 3. Nine individuals died (two females and seven males) and 11 survived (eight females and three males). All but one individual died before the return phase of their first trip at sea, and all but one were negatively buoyant. Causes of death were variable, although common factors included increased horizontal travel speeds and distances, decreased development in dive and forage ability, and habitat type visited (lower sea surface temperatures and decreased total [eddy] kinetic energy). 4. For long‐lived marine vertebrate predators, such as the southern elephant seal, the first few months of life following independence represent a critical period, when small deviations in behavior from the norm appear sufficient to increase mortality risk. Survival rates may subsequently be particularly vulnerable to changes in climate and environment, which will have concomitant consequences on the demography and dynamics of populations. |
format | Online Article Text |
id | pubmed-6972805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69728052020-01-27 High mortality rates in a juvenile free‐ranging marine predator and links to dive and forage ability Cox, Sam L. Authier, Matthieu Orgeret, Florian Weimerskirch, Henri Guinet, Christophe Ecol Evol Original Research 1. High juvenile mortality rates are typical of many long‐lived marine vertebrate predators. Insufficient development in dive and forage ability is considered a key driver of this. However, direct links to survival outcome are sparse, particularly in free‐ranging marine animals that may not return to land. 2. In this study, we conduct exploratory investigations toward early mortality in juvenile southern elephant seals Mirounga leonina. Twenty postweaning pups were equipped with (a) a new‐generation satellite relay data tag, capable of remotely transmitting fine‐scale behavioral movements from accelerometers, and (b) a location transmitting only tag (so that mortality events could be distinguished from device failures). Individuals were followed during their first trip at sea (until mortality or return to land). Two analyses were conducted. First, the behavioral movements and encountered environmental conditions of nonsurviving pups were individually compared to temporally concurrent observations from grouped survivors. Second, common causes of mortality were investigated using Cox's proportional hazard regression and penalized shrinkage techniques. 3. Nine individuals died (two females and seven males) and 11 survived (eight females and three males). All but one individual died before the return phase of their first trip at sea, and all but one were negatively buoyant. Causes of death were variable, although common factors included increased horizontal travel speeds and distances, decreased development in dive and forage ability, and habitat type visited (lower sea surface temperatures and decreased total [eddy] kinetic energy). 4. For long‐lived marine vertebrate predators, such as the southern elephant seal, the first few months of life following independence represent a critical period, when small deviations in behavior from the norm appear sufficient to increase mortality risk. Survival rates may subsequently be particularly vulnerable to changes in climate and environment, which will have concomitant consequences on the demography and dynamics of populations. John Wiley and Sons Inc. 2019-12-11 /pmc/articles/PMC6972805/ /pubmed/31988734 http://dx.doi.org/10.1002/ece3.5905 Text en © 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Cox, Sam L. Authier, Matthieu Orgeret, Florian Weimerskirch, Henri Guinet, Christophe High mortality rates in a juvenile free‐ranging marine predator and links to dive and forage ability |
title | High mortality rates in a juvenile free‐ranging marine predator and links to dive and forage ability |
title_full | High mortality rates in a juvenile free‐ranging marine predator and links to dive and forage ability |
title_fullStr | High mortality rates in a juvenile free‐ranging marine predator and links to dive and forage ability |
title_full_unstemmed | High mortality rates in a juvenile free‐ranging marine predator and links to dive and forage ability |
title_short | High mortality rates in a juvenile free‐ranging marine predator and links to dive and forage ability |
title_sort | high mortality rates in a juvenile free‐ranging marine predator and links to dive and forage ability |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972805/ https://www.ncbi.nlm.nih.gov/pubmed/31988734 http://dx.doi.org/10.1002/ece3.5905 |
work_keys_str_mv | AT coxsaml highmortalityratesinajuvenilefreerangingmarinepredatorandlinkstodiveandforageability AT authiermatthieu highmortalityratesinajuvenilefreerangingmarinepredatorandlinkstodiveandforageability AT orgeretflorian highmortalityratesinajuvenilefreerangingmarinepredatorandlinkstodiveandforageability AT weimerskirchhenri highmortalityratesinajuvenilefreerangingmarinepredatorandlinkstodiveandforageability AT guinetchristophe highmortalityratesinajuvenilefreerangingmarinepredatorandlinkstodiveandforageability |