Cargando…
Multi-trait single-step genomic prediction accounting for heterogeneous (co)variances over the genome
Widely used genomic prediction models may not properly account for heterogeneous (co)variance structure across the genome. Models such as BayesA and BayesB assume locus-specific variance, which are highly influenced by the prior for (co)variance of single nucleotide polymorphism (SNP) effect, regard...
Autores principales: | Karaman, Emre, Lund, Mogens S., Su, Guosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972913/ https://www.ncbi.nlm.nih.gov/pubmed/31641237 http://dx.doi.org/10.1038/s41437-019-0273-4 |
Ejemplares similares
-
Correction: Multi-trait single-step genomic prediction accounting for heterogeneous (co)variances over the genome
por: Karaman, Emre, et al.
Publicado: (2020) -
Genomic Prediction Using Multi-trait Weighted GBLUP Accounting for Heterogeneous Variances and Covariances Across the Genome
por: Karaman, Emre, et al.
Publicado: (2018) -
The patterns of genomic variances and covariances across genome for milk production traits between Chinese and Nordic Holstein populations
por: Li, Xiujin, et al.
Publicado: (2017) -
Genomic prediction using a reference population of multiple pure breeds and admixed individuals
por: Karaman, Emre, et al.
Publicado: (2021) -
Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits
por: Gebreyesus, Grum, et al.
Publicado: (2017)