Cargando…

Enhanced Adsorptive Desulfurization Using Mongolian Anthracite-Based Activated Carbon

[Image: see text] This study reports usage of Mongolian anthracite-based porous activated carbons (PMACs), namely, PMAC 1/3 and PMAC 1/4 for model diesel fuel desulfurization, having 500 ppmw of dibenzothiophene (DBT) in n-heptane. Further, the effects of contact time, adsorbent dosage, and temperat...

Descripción completa

Detalles Bibliográficos
Autores principales: Jha, Divyam, Haider, Mohd Belal, Kumar, Rakesh, Byamba-Ochir, Narandalai, Shim, Wang Geun, Marriyappan Sivagnanam, Balathanigaimani, Moon, Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972957/
https://www.ncbi.nlm.nih.gov/pubmed/31970308
http://dx.doi.org/10.1021/acsomega.9b03432
Descripción
Sumario:[Image: see text] This study reports usage of Mongolian anthracite-based porous activated carbons (PMACs), namely, PMAC 1/3 and PMAC 1/4 for model diesel fuel desulfurization, having 500 ppmw of dibenzothiophene (DBT) in n-heptane. Further, the effects of contact time, adsorbent dosage, and temperature on the adsorption capacity were studied systematically. The experimental adsorption isotherm results were well represented by the Sips isotherm for PMAC 1/3 and the dual site Langmuir isotherm for PMAC 1/4. The maximum DBT adsorption by PMAC 1/3 and PMAC 1/4 were 99.7 and 95.7%, respectively. The kinetics for the adsorption of DBT on PMACs follows the pseudo second order behavior. The Weber–Morris plot shows the multilinearity over the entire time range, suggesting that both the surface and pore diffusions control the adsorption. The values of boundary layer thickness for PMAC 1/4 and PMAC 1/3 were found to be 3.183 and 1.643, respectively. Thus, PMAC 1/4 possesses more surface diffusion control than PMAC 1/3. The changes in Gibbs free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) are negative, which confirms that the studied process is spontaneous and exothermic and possesses less randomness at the interface. Based on the Sips isotherm, single-stage batch-adsorber design was prepared for the adsorption of DBT onto PMAC 1/3.