Cargando…
Rapid decreases in relative testes mass among monogamous birds but not in other vertebrates
Larger testes produce more sperm and therefore improve reproductive success in the face of sperm competition. Adaptation to social mating systems with relatively high and low sperm competition are therefore likely to have driven changes in relative testes size in opposing directions. Here, we combin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6973093/ https://www.ncbi.nlm.nih.gov/pubmed/31755210 http://dx.doi.org/10.1111/ele.13431 |
Sumario: | Larger testes produce more sperm and therefore improve reproductive success in the face of sperm competition. Adaptation to social mating systems with relatively high and low sperm competition are therefore likely to have driven changes in relative testes size in opposing directions. Here, we combine the largest vertebrate testes mass dataset ever collected with phylogenetic approaches for measuring rates of morphological evolution to provide the first quantitative evidence for how relative testes mass has changed over time. We detect explosive radiations of testes mass diversity distributed throughout the vertebrate tree of life: bursts of rapid change have been frequent during vertebrate evolutionary history. In socially monogamous birds, there have been repeated rapid reductions in relative testes mass. We see no such pattern in other monogamous vertebrates; the prevalence of monogamy in birds may have increased opportunities for investment in alternative behaviours and physiologies allowing reduced investment in expensive testes. |
---|