Cargando…

Essential Role of mGBP7 for Survival of Toxoplasma gondii Infection

Members of the murine guanylate-binding protein family (mGBP) are induced by interferon gamma (IFN-γ) and have been shown to be important factors in cell-autonomous immunity toward the intracellular pathogen Toxoplasma gondii. Previously, we identified that mGBP2 mediates disruption of the parasitop...

Descripción completa

Detalles Bibliográficos
Autores principales: Steffens, Nora, Beuter-Gunia, Cornelia, Kravets, Elisabeth, Reich, Artur, Legewie, Larissa, Pfeffer, Klaus, Degrandi, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974569/
https://www.ncbi.nlm.nih.gov/pubmed/31964735
http://dx.doi.org/10.1128/mBio.02993-19
Descripción
Sumario:Members of the murine guanylate-binding protein family (mGBP) are induced by interferon gamma (IFN-γ) and have been shown to be important factors in cell-autonomous immunity toward the intracellular pathogen Toxoplasma gondii. Previously, we identified that mGBP2 mediates disruption of the parasitophorous vacuole membrane (PVM) and directly assaults the plasma membrane of the parasite. Here, we show that mGBP7-deficient mice are highly susceptible to T. gondii infection. This is demonstrated by the loss of parasite replication control, pronounced development of ascites, and death of the animals in the acute infection phase. Interestingly, live-cell microscopy revealed that mGBP7 recruitment to the PVM occurs after mGBP2 recruitment, followed by disruption of the PVM and T. gondii integrity and accumulation of mGBP7 inside the parasite. This study defines mGBP7 as a crucial effector protein in resistance to intracellular T. gondii.